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1. Introduction

Despite significant advances in primary and metastatic lesion detection with static PET, the ability to
accurately detect axillary metastases at an early stage remains the greatest challenge in breast cancer
imaging. At an early stage, radiotracer uptake of metastatic tissue is often weak, due to the relatively
fewer cells involved with disease. Moreover, the diseased tissue and abnormal uptake is, in most
circumstances, embedded in severe background interference and count noise, thus hardly
differentiated from surrounding normal tissues with visual inspection in either 2-D or 3-D static PET
images. Once metastases develop into fully visible lesions, detection may already been delayed for a
certain amount of time. To avoid or reduce such delay it is desired that the molecular changes of
metastases in PET images can be detected from interference at an earlier stage before they become
completely visible.

This proposed project uses a different approach to enhance the signal-to-noise ratio (SNR) in PET
images for early metastasis detection. We have been developing an intelligent detection of early
metastasized molecular feature (IDEMMF) system for evaluating axillary metastatic lesions at an
early stage with dynamic positron emission tomography (PET). The objective is to extend lesion
visibility from limited 2-D or at most 3-D to a higher dimensional space, where molecular features in
the malignancy and normal tissue can be better distinguished. Thus, increasing the SNR of metastatic
lesions not routinely visualized becomes approachable. The premise of this approach is that molecular
features available in dynamic PET data in the primary tumor of an individual patient can be used to
identify early metastases that are obscured by overlying background tissue activities. IDEMMF
"learns" the molecular features from the primary tumor and normal tissues of an individual patient in
order to identify the tumor-like multidimensional (temporal + 3D spatial) molecular features of tissues
that are undergoing metastases but too weak to be visualized due to server background interference
and count noise. Using IDEMMF, these features can be enhanced via a combination of sophisticated
PET molecular imaging models and advancing image processing techniques.

2. Body
The whole proposed study consists of four tasks: Task 1: Developing the mathematical formula to
linearly map and identify the physiological features contained in PET dynamic sinogram sequence
(Month 1-8), Task 2: Developing the schemes for objective reduction of dynamic sinogram data
guided by the identified TAC subspaces of the desired signal (tumor) and the interference (normal
tissue background plus noise) (Month 4 - 12), Task 3: Deriving and analyzing statistical hypothesis
test criteria to test the presence of an axillary metastasis in the dynamic images reconstructed from the
compressed sinogram data (Month 13 - 24), and Task 4: Clinical Evaluation (Month 13 - 36). For
each task, several subtasks were defined (see the SOW in the grant application for details).

The hypothesis was tested in the project is

Hypothesis: The molecular mechanisms and kinetics of [18F] FDG in the metastases of the
individual patient are similar to those in primary tumors, but differ from those in normal tissue. The
multidimensional molecular features extracted in visible primary lesion and normal tissues of a
patient can be utilized to enhance the tumor-like features in faint or invisible metastases by cleaning
up the normal background and statistical noise superimposed on them.
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The Intelligent Detection of Early Metastasized Molecular Feature (IDEMMF) system under the
development consists of four major modules as depicted in Fig 1 (1) tracer molecular modeling; (2)
primary tumor feature extraction; (3) feature-guided filter design; and (4) detection criteria design.
The functions and interactive relationship of these modules are described as follows. In general, the
tracer model is the vehicle to define the relationship between the noninvasive in vivo measured
dynamic molecular PET data and a set of parameters reflecting local rates of physiological transport,
molecular behaviors and biochemical reactions. Parameter estimation mathematically extracts useful
physiological information intrinsic to molecular features of the time activity curve (TAG) of known
normal tissues and primary malignancy in a dynamic PET image sequence. These procedures have
been well-established in the literature. In our technique, however, once the parameter estimations
were obtained for an individual patient, the corresponding molecular feature spaces, spanned by a few
molecular feature vectors specifically associated to this patient, was formed for both malignant and
normal tissues. A feature-guided filter was then designed for this patient, based on his/her own feature
spaces rather than on pooled-training features, considering molecular behaviors may vary from patient
to patient. The single patient tuned filter was applied to the dynamic images in order to objectively
suppress the background tissue interference and statistical noise from the contaminated TACs of
small, faint metastatic lesions that could not be discerned on routine visual inspection. The filtered
sets under two hypothesized data models were processed further by a statistical hypothesis testing
procedure. This procedure made hypotheses on the data according to tissue types (normal or
malignant) and then tested to see which hypothesis the measured data were most likely consistent
with. The outputs of signal detection which were proportional to the likelihood (probability) of a
given hypothesis being true or false for each measurement were used as an adjunct to visual
inspection.
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ModenlingJ k Design Criteria

SFigure 1: A diagram of the proposed IDEMMF system

2.1. Development of feature extraction and analysis

The feature extraction and analysis in dynamic PET images have been studied in both theory and
practice. The intensive mathematical analysis has been performed based on the advanced FDG-PET

kinetic modeling. The detailed analysis results can be found in Appendix A. The main improvements
on the existing region of interest based techniques are briefly reported below.
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2.1.1 TAC feature extraction
Using dynamic phantom data with known ground truth, we tested, to a certain degree, how the time
activity curve in a large, visible lesion could be possibly interfered by its surrounding background
activity (partial volume effect) [1,2, 4,6] through the currently used, imperfect reconstruction
techniques and how the accuracy of lesion feature related parameters might be affected by the
common ROI-averaged time activity curve.

We have performed an experimental study with a realistic liver phantom. In the liver phantom three
artificial spherical lesions of different sizes and contrasts were placed inserted into the. Two tracers, 11C
and 18F, were filled into the liver and lesions, respectively, with uniform activity distributions. Dynamic
data were acquired of the phantom with ECAT953 2-D whole body scanner. This allowed the radioactive
decay signature of the two radiopharmaceuticals to be measured as pseudo-washout data. In the filtered
backprojection reconstructed images, the smallest lesion with 7mm interior diameters was invisible in all
dynamic frames, while the two largest lesions can be clearly visualized in the FBP images, see Figure 2
(a) - (d) for an illustration.

~~~~. .......... ........

(a) (b) (c) (d)
Figure 2: (a) -(c) The last frame FBP images of the smallest, median, and largest lesions in the liver phantom; (d) The time activity
curves in semi-log scale: true mono-exponential function of 18F (red) and ROI averaged observation.

The largest lesion was used to mimic a primary tumor detected in a patient. A ROI was placed in it
indicated in red in Figure 2 (c). The time activity curve in the lesion was estimated by fitting an ROI
averaged observation. The resulting curve is plotted in semi-log scale and shown in Figure 2 (d). As
we can see that the estimated curve in blue is far from the true F time activity curve. The true curve
should be a mono-exponential function and a straight line in semi-log scale. Evidently, the estimated
features in lesion were severely contaminated by the activities of llC in the liver background. These
features can not adequately characterize lesions. If we use these inaccurate lesion features to guide a
filter design, then at an attempt to protect the lesion features during the filtering, we also vulnerably
keep the unwanted background interference. This will definitely affect the performance of filtering
and lower the SNR gain in the filtered images.

2.1.2 Non-invasive blood input function extraction
Blood input function is required in molecular feature extraction with FDG PET time activity models
[1, 8,9]. We have also assessed the feasibility of replacing invasive blood sampling with non-invasive
blood time activity curve extracted from dynamic image data. The most common way to get blood
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function is invasive blood drawing; however, operationally it is complicated, time consuming, and
difficult for patients to have arterial blood draws throughout the procedure. A critical issue with the
non-invasive approaches is their "ACCURACY". This is because, besides noise interference, the
blood function is often interfered also by surrounding tissues. There are two non-invasive approaches
available: one is a simple ROI based analysis and the other is the more complex FADS, or factor
analysis of dynamic structure method. FADS is well known for its capability to separate time activity
curves from the mixed observations.

Ten lung cancer and inflammation patient data were collected for the study. The blood samples were
invasively collected from all these patients. These blood samples served as gold standard in the
evaluation.

(a) (b) (c)
Figure 3: (a) The last frame FBP image of a lung cancer patient; (b) The ROI used to non-invasively extract arterial blood
function; (c) The three blood functions: invasive blood samples (red), FADS estimation (green) and ROI-average (blue).

This study over 10 patients concludes that when compared to invasively collected blood samples, the
blood functions estimated from FDAS have the mean square errors about 7 times lower than those of
ROI average method. FADS approach is potential to outperform ROI-based method for replacing the
invasive blood sampling. One example is shown in Figure 3.

FADS processing is widely used in cleaning up the surrounding background time activity
interferences in the blood function non-invasively extracted in dynamic images at an area with strong
arterial activity. Our study found out that FADS processed blood input functions has much more
fidelity to the invasively collected blood samples in patients, but, on the other hand, we have also
found that FADS processing failed to remove the interferences superimposed on the invisible artificial
lesions in both experimental and digital phantom studies due to low lesion-to-background ratios.
Consider the detected primary tumor and the normal tissues in properly selected areas are usually
strong that are analogous to the scenario of blood function extraction. Thus, we will resort to FADS
processing to separate the unwanted time activities contributed from surrounding background from
the observed time activities in the primary tumor and normal tissues. The feature parameters will be
estimated from the FADS resulted TACs, instead from that simply averaged in ROI.

2.2 Development of filtering and detection algorithms
Two types of filtering and detection algorithms have been developed which exploit the differences
between normal and malignant tissues explored in the feature analysis. The details are reported in
Appendices A and B and [8] [9].
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2.3. Evaluation of spatial-temporal image processing

2.3.1 Evaluation via experimental phantom
Can adding temporal information to spatial processing improve SNR in small, faint or invisible
lesions? This is a critical question that this study attempted to answer. We conducted the studies with
both the digital (computer generated) phantom and the liver experimental phantom data that we
believe would shed light upon answering the question.

The above-mentioned liver phantom shown in Figure 2 was used to test in gaining SNR in the
smallest lesion through spatial-temporal processing. Figure 4 (a) - (c) shows the FBP reconstructed
images of this lesion at Frame 1, 15 and 23 and Figure 4 (d) is the MAP reconstruction of Frame 23.
This confirms that the lesion is invisible in all the frames using either the simple or advanced
reconstruction methods. In other words, by exploiting only the spatial information in the data can not
improve SNR high enough to make the lesion become detectable. To further increase SNR in the
smallest lesion, making a use of the intrinsic, temporal information available in PET dynamic data is
pursuable. We first tried to apply FADS to separate or remove the liver background activities and
statistical noise superimposed onto the lesion, since we knew that FADS is well credited in
decomposing the mixed observation from visible structures.

Via FADS we projected the dynamic images into the principle components of the images, but in none
of the decomposed images the lesion was distinguishable. In Figure 4 (e), the first two principle
component images are presented as an illustration. This indicates that a direct application of FADS
provides no answer to early metastasis detection, this is because when lesion components are too
weak to be dominant components, the principle component based FADS would fail to separate them
from the noise. Figure 4 (f) is the output result of the metastasis detection shown in Figure 1. The
technical details are given in Appendix A. In this test data, the primary tumor features were extracted
in the largest artificial lesion shown in Figure 2 (c) by a simple ROI average. Although the accuracy
of ROI based feature extraction had been shown not high enough, the results of this study reveal that
adding temporal information to image processing indeed has potential to increase SNR in small
lesions, as long as the features in small and primary lesions are similar in certain degree.

(a) (b) (c) (d)

(e) (f)
Figure 4: (a)-(c) FBP reconstruction of Frame 1,15 and 23; (b) MAP reconstruction of Frame 23; (c) FADS

decomposed images; (d) filtered image using the simplest version of proposed methods.



2.3.2 Evaluation via ROC study with digital phantom study
The image of the digital phantom is shown in Figure 5 (a). There are five lesions in the ellipse. The
lesions were assigned with the time activity curve collected in a proven lung metastatic malignant and
the rest of the ellipse was assigned with the time activity curve in lung normal tissues, respectively.
These curves are shown in Figure 5 (c). By forward projecting, the dynamic phantom sinogram data
were generated and certain amount of Poisson noise was added to the projections. The noise energy
level was controlled to make the lesions invisible in all the frames of FBP reconstructed images. The
last frame of FBP reconstructed image with the highest SNR is presented in Figure 5 (b). None of the
five lesions can be visualized as desired.

Assuming that the time activity curves in the lesions and the background are known in prior, we tested
at each pixel whether the time activity curve observed is more similar to the lesion TAC or the
background TAC in the sense of mean square errors. If at a pixel, the TAC observation is closer to the
lesion TAC, then a lesion is detected at that pixel. Otherwise, the pixel is declared to be a normal
tissue. 50 sets of dynamic phantom data were generated with/without adding digital lesions for a ROC
study. The resulted ROC is given in Figure 5 (d). Although in reality the feature knowledge we know
about lesion and normal tissues is not exactly the same as those in faint or invisible metastases, the
resulting ROC demonstrates the potential to improve early metastasis detection from almost zero to
10% - 20%.

0.03

"0.02

0.01,

20 40 60 80 100 120 0 1000 2000 3 00 0  .

(a) (b) (c) (d)
Figure 5: (a) Digital phantom image; (b) FBP reconstructed image of (a); (c) Time activity curves
assigned to lesions (red) and background (blue); (d) The measured ROC curve

2.3.3 Evaluation via animal study
We evaluated the proposed methods for early detection in vivo using animal study with a miniature
PET scanner (microPET, Concorde Microsystems, Knoxville, TN). Primary tumors mimicking the
molecular mechanisms of human cancer were implanted in mice subcutaneously.

The MDA-MB-435 human breast carcinoma cell line was used to grow primary tumors in the study.
During the period of tumor formation, dynamic FDG microPET images of the mice were acquired to
monitor the tumor growth at early stage on a multiple-day base. Three mammary fat mice were used.
In order to assure the early stage to be captured, different number of cells (106, 0.5x10 6 and 0.1x10 6)
were injected into the same mouse under the two arms. In this means, the rates of tumor growth
should be different.
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Dynamic PET imaging of FDG (200 uci) was performed on a MicroPET R4 system (Concorde
MicroSystems, Inc). Six days after inoculation, thirty-five dynamic data frames were acquired for 1 hr
after intravenous injection - 6xlsec, 4x3 sec, 10x30 sec, 5x60 sec, and 10x300 sec. Images were
reconstructed with the OSEM algorithm, as shown in Figure 6 (a). The corresponding time-activity
curves of the two tumors, normal tissues and heart have already been showed in Figure 6 (b). The
blood input function was measured in the images at a selected ROI in the heart area. Figure 6 (c) is
the transformed image of Figure 6 (a) after passing through the constraint temporal filter.

(a)(

(c)
N

(d) (e)

Fig. 6. Animal study: (a) Reconstructed FDG-PET image (6 days after inoculation); (b) TA~s drawn
from (a); (c) processed image of (a) by using the constraint temporal filter; (d) Reconstructed FDG-
PET image (12 days after inoculation); (e) TA~s drawn from (d).

We also present another reconstructed image in Figure 6(d), which is acquired twelve days after
inoculation. Figure 6(e) shows the corresponding TA~s for the latterly acquired images. Comparing
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Figure 6(a) and Figure 6(b), it demonstrate that the tumors grow bigger and the slope of tumor's TAC
becomes steep after six more days. Using these facts, we confirmed that the findings in the filtered
output image shown in Figure 6(c) were correct.

2.3.4 Evaluation via patient data

Patient study
Case of breast cancer: Fig. 7 (a) shows an FBP image of a breast cancer data archive without
attenuation correction, in which only one small axillary metastasis can be visualized, indicated by an
arrow. Attenuation corrected version of the same slice is shown in Fig. 7(b). Applying the primary
tumor guided filtering, a method developed during this project, to the attenuation corrected dynamic
images identified one extra metastasis as shown in Fig. 7(c). These positive findings have been
confirmed by a follow-up study acquired 1.5 years later (the patient had no interval treatment of her
primary or metastatic disease). See Figure 7 (d). Between the two studies no treatment was given and
the disease progressed. Applying a threshold to the filtered image in Figure 7(c), the resulted
detections are shown in Figure 7(e). Overlaying the filtered image in red to the follow-up image,
Figure 7(f) demonstrates the computer identified metastases well aligned with those in the follow-up
image. The slight misalignment between lesions and detections could be mitigated if an advancing
registration accounting for non-rigid transformation was applied. Note that besides the two confirmed
lesions, there are also some other pixels passing the threshold. This is because we only used a simple
single pixel decision criterion. However, if we add the spatial size of lesions to be detected into the
decision criterion, then we can get rid of the center parts in Figure 7(e). Moreover, the computer-
generated likelihood of malignance will be reviewed by visual inspection. Combined with the
additional knowledge of the patient's disease, the false positive findings in Figure 7(e) can be
eliminated.

(a) (b) (c)

(d) (e) (f)
Figure 7: (a) FBP image of a breast cancer without attenuation correction; (b) Attenuation correction of (a);
(c) the filtered image of (b); (d) the follow-up image after 1.5 years; (e) the detection by the computer
observer; (f) the image of overlaying (e) on (d).

11



Cases of lung cancer and inflammation: The developed spatial temporal filtering guided with the
features extracted on a patient by patient base has also been applied to differentiate between
malignancy and inflammation. Figures 8(a) and (b) show a case of lung cancer and the corresponding
filtering output image. Evidently the lesion was enhanced dramatically. As a contrast, Figure 9
presents a patient with lung cancer and joint inflammation where the joint is hot in the late frames of a
dynamic PET scan. The simple, single template defined filter (mentioned in last annual report) was
applied to process the data. We designed the filter using the physiological features extracted in a lung
malignancy shown in Figure 8(a). In the filtered image, the "hot" spot caused by benign joint
inflammation was filtered out the as normal tissue features. The result is shown in Fig. 9(b). This case
demonstrates that the "hot" inflammation in FDGPET images may mislead visual inspection of static
image, but with the feature guided spatial-temporal filtering, we can have a better chance to correctly
distinct it from malignances.

.W Claw

(a) (b)
Figure 8: A lung lesion

(a) (b)

Fig. 9: (a) Joint inflammation in a patient with lung cancer, and (b) Filtered
dvnamic image of the same slice

Remarks:
The three year grant was originally funded until July 31, 2002. However, after the first year's annual
report, it was brought to our attention that we needed to obtain approval from both the U.S. Army
Medical Research and Material Command Institutional Review Board (US Army IRB) for patient
data collection, because although patients whose data to be used in this study will have a PET scan
regardless of their participation in this study, they still must be prospectively recruited for
"additional" (temporal-based) images. Since November 2000 the Army IRB had have a hold on the

12



acquisition of the clinical data under this grant till May 2002; therefore, we had not obtained all of the
data needed to complete the funded objectives.

We have requested a 24 month no-cost extension of the funding period for this project. As the US
Army Medical Research Command was well aware of the delays with the clinical data, the request
was proved. But due to a new PET/CT scanner purchased at the USC PET Clinical Center, the old
PET scanner which has the capability to acquire dynamic scans had to be moved to and installed at
our research facility, thus the task of acquiring 75 patients for performance analysis and evaluation for
this project was not fully accomplished. For compensation, we added three groups of animal studies,
each with 5 mice.

The major accomplishments of this activity are presented as follows:

3. Key Research Accomplishments

The main accomplishments of the project are

1. Explored temporal physiological differences in malignant and normal tissues based on the
advanced FDG-PET kinetic modeling; mathematically mapped the physiological differences
in temporal domain onto the kinetic (macro) parameter domain; revealed and analyzed such
temporal or parametric differences in frequency domain and time-frequency domain;

2. Assessed the accuracy of ROI-based molecular feature extraction techniques with the real liver
phantom data; developed the factor analysis aided feature extraction method to improve the
accuracy of feature parameter estimation; evaluated the non-invasive blood input function
extraction with clinically collected blood samples at the USC PET center;

3. Designed two space-temporal filtering and detection criteria to identify the early metastases
embedded from the unwanted noise and background interference which exploit the
physiological features in malignant and normal tissue observed in FDG-PET images;

4. Integrated the accomplishments and findings listed in Items 1 - 3 into a software prototype of
Intelligent Detection of Early Metastasized Molecular Feature (IDEMMF) system, shown in
Figure 1;

5. Assessed the IDEMMF system with digital or numerical phantom, experimental phantom,
animal study and clinical study.
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4. List of Reportable Outcomes:

4.1 Publications

1. C. C. Huang and X. Yu, "A New Method of Computer-Aided Feature Identification for
Lesion Detection in PET-FDG Dynamic Study", IEEE Medical Imaging Conference, Seattle,
WA, November 1999.

2. X. Yu, C. C. Huang and P. S. Conti, "Comparison of Kinetic Features Extracted in OSEM
and FBP Reconstructed Dynamic PET Images for Oncology", SNMAnnual Conference, San
Louise, Mo., June 2000.

3. X. Yu and C. C. Huang, "A Fast Method to Compute Covariance Matrix in Positron Emission
Tomography Images", IEEE Medical Imaging Conference 2000.

4. C. C. Huang, "Computer-Aided Lesion Detection in Positron Emission Tomography: A
Signal Subspace Fitting Approach", Ph. D. Thesis, submitted to Electrical Engineering
Department of USC, May 2001.

5. X. Yu, C. C. Huang and P. S. Conti, "Assessment of ROI-based Time Activity Analyses in
Dynamic PET For Oncology" SNM Annual Conference 2001, Toronto, Ca., June 2001.

6. X. Yu, Z. Li, H. Jadvar and P. S. Conti, "Assessment of Non-invasive Blood Time Activity
Extraction in Dynamic PET Oncology", SNM Annual Conference 2002, Los Angeles, CA.,
June 2002.

7. X. Yu, C. C. Huang, and P. S. Conti, "Computer-aided Metastasis Detection with Dynamic
PET", presented at the Era of Hope Conference, Orlando, FL., September 2002.

8. X. Yu, Z. Li, H. Jadvar and P. S. Conti, "Identification of Malignant and Benign Lesions in
Dynamic PET Oncology", SNM Annual Conference 2003, New Orleans, San Louise, June
2003.

9. H. Jadvar, JR Bading and X Yu, PS Conti, "Dynamic FDG PET Kinetic Analysis of
Inflammation and Cancer: Preliminary Results", SNM Annual Conference 2003, New
Orleans, San Louise, June 2003.

10. J. Chen, X. Yu, "Enhanced Dynamic FDG-PET Tumor Detection with Constrained Temporal
Filtering", Proceedings of IEEE International Conference on Medical Imaging, Portland, Or.
October, 2003.

11. Z. Li, X. Yu, "Exploring Frequency Differences Of Physiological Processes To Enhance
Dynamic FDG-PET", Proceedings of IEEE International Conference on Medical Imaging,
Portland, Or. October, 2003.
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12. J. Chen, X. Yu, "Rapid Assessment of PET Dynamic Images Using Computer Observers",
Proceedings of IEEE International Symposium on Medical Imaging, October, 2004.

13. Z. Li, X. Yu, "Computer Aided Lesion Detection with Multi-channel Time-Frequency
Analysis", Proceedings of IEEE International Conference on Medical Imaging, October,
2004.

14. X. Yu and I. S. Reed, "Theory and Algorithms of Rank Reduction for Subspace Filtering",
amended submission to IEEE Trans. On Information Theory, December 2004

15. J. Chen and X. Yu, "Space-temporal Analysis and Processing of Dynamic PET Images",
submitted to IEEE Trans. On Information Technology in Biomedicine.

16. Z. Li and X. Yu, "Exploring Physiological Differences in Time-Frequency Domain to
Improve Tumor Detectability for Dynamic PET", submitted to IEEE Trans. On Information
Technology in Biomedicine.

17. Z. Li, X. Yu, "Computer-aided Early Metastasis Detection in Dynamic Positron Emission
Tomography", in preparation for submission to IEEE Trans. On Medical Imaging Processing.

4.2 Education Training and Graduation

Master Degree:
1. Chandhrasri, Swias, Electrical Engineering, January 1998 - May 2000
2. Tian, Ding, Electrical Engineering, September, 2000 - May 2002
3. Zheng, Jianchang, Computer Science, January 1996 - December 1997

Ph. D. Degree:
1. Huang, ChungChie, Electrical Engineering, September 1995 - December 1999
2. Thanyasrisung, Piyapong, Electrical Engineering, May 1996 - December 1997
3. Hu, ChiaChang, Electrical Engineering, September 1996 - May 1998
4. Saghari, Poorya, Electrical Engineering, September 2000 - May 2002
5. Chen, Jiansong, Electrical Engineering, September 2000 - Present
6. Li, Zheng, Electrical Engineering, January 2001 - Present

5. Conclusion

The goal of this project is to improve detection of metastatic axillary breast cancer through
sophisticated physiological modeling and statistical signal processing techniques. The major focus of
this project was to explore temporal physiological differences in malignant and normal tissues based
on the advanced FDG-PET kinetic modeling assessment; assess and improve the accuracy of ROI-
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based molecular feature extraction techniques from the known primary breast tumor; design the
space-temporal filtering and detection criteria to identify the early metastases from sever background
interference and count noise; integrate the developed feature extraction and filtering/detection criteria
into a software prototype of Intelligent Detection of Early Metastasized Molecular Feature
(IDEMMF) system; and test and evaluate the prototype with phantom, animal study and clinical
patient study. Our theoretical findings include mathematically map of the physiological differences in
temporal domain onto the kinetic (macro) parameter domain; revealing and characterization of the
temporal or parametric domain differences in frequency domain and time-frequency. The evaluations
on a small scale of animal and patient data show that the IDEMME system can significantly enhance
the metastatic lesion detection by exploring the temporal differences in dynamic FDG-PET images.
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Abstract

As with all nuclear medicine imaging technologies, lesion detection with positron emission tomogra-

phy (PET) scanning of 2-[fiuorine-18]-fluoro-2-deoxy-D-glucose (FDG)-labeled tissues is restricted

by a relatively limited spatial resolution and a low signal-to-noise ratio, both rendering diagnosis

by visual inspection difficult and potentially inaccurate. In this paper, a computer-aided lesion de-

tection algorithm combined with the kinetic time activity curve (TAC) feature identification from

the FDG-PET dynamic images is developed to assist visual inspection for lesion detection. We

propose that the unique temporal and frequency TAC features available in dynamic FDG-PET

images can be distinguishedly identified for normal and malignant tissues, then be usefully applied

in statistical hypothesis tests to improve the detection of small lesions. The hypothesis is that,

the TACs extracted from FDG-PET dynamic images may have variant shapes among tissues of

different size and location within a given organ, but the sets of base functions weighted to compose

the TACs which could be physiological process functions or wavelets base functions are invariant.

Thus, our approach is based on using the linear invariant subspaces, defined as a span of a set of

base functions, to model the lesion and normal tissue TAC features. The lesion and normal tissue

subspaces, estimated from the known tissue types of data by the signal-subspace-fitting methods,

are used for unknown lesion detection by applying a matched subspace detection criterion derived

from a generalized likelihood ratio test. The experimental results using FDG-PET dynamic studies

of cancer patients demonstrate that the identified TAC features are not only distinct and invariant

for different tissue types of data, but also useful for discriminating lesions from normal tissues by

incorporating a statistical hypothesis test. To quantitatively compare the sensitivity and specificity

for different computer observers, a Monte Carol computer simulation of dynamic phantom images

are simulated for achieving the receiver operating characteristic analysis.



1 Introduction

Positron emission tomography (PET), a rapidly developing technique for producing in vivo radio-

tracer distribution images, provides important physiological information. Non-invasive diagnostic

procedures using PET imaging not only enable physicians to assess the metabolic activity of lesions

in vivo, but also allow patients to avoid multiple costly procedures and to benefit from guided sur-

gical intervention. PET scanning with 2- [fluorine-18]-fluoro-2-deoxy-D-glucose (FDG) is improving

the diagnosis, staging, and treatment monitoring of a variety of human tumors [3, 22] and is becom-

ing useful for the non-invasive diagnosis of cancer. However, as with all nuclear medicine imaging

technologies, lesion detection with PET-FDG images is restricted by a relatively limited spatial res-

olution and a low signal-to-noise ratio, both rendering diagnosis by visual inspection difficult and

potentially inaccurate, especially when the lesion diameter is small. Hence, computer-aided detec-

tion (CAD) algorithms, e.g., feature identification, have been developed to assist visual inspection

in PET lesion detection. The difficulty is that spatial features such as the shape or contrast of a

lesion in an image are often varied and difficult to identify [7, 8, 25]. Therefore, the PET dynamic

data, providing the physiological information, becomes straightforward for feature identification

[9].

The PET dynamic studies have been widely applied in medical images to estimate quantities,

such as blood volume, flow, and local cerebral metabolic rates of glucose (LCMRGlc), etc [21,

16]. For example, by tracking how much glucose is metabolized in different areas of the body,

PET-FDG imaging enables physicians to map glucose utilization. The compartmental models are

usually used to quantitatively describe the tracer kinetic behaviors. Physiological factor analysis

has been applied to the PET dynamic images to identify fundamental functions useful in the

compartmental modeling of PET data [5]. Factor analysis of dynamic structures (FADS) was

used to estimate the parameters of a compartment model [1]. Because FADS is used to solve an

under-determined problem, there are an infinite number of sets of factors for possible solutions. A

procedure called information-based factor analysis in dynamic structures (IBFADS) [14, 15] was

introduced to incorporate a priori physiological information to reduce the error in the estimation

of correct model. Information was added by using suitable mathematical models to describe the
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underlying physiological processes. Principal component analysis (PCA) [17] was introduced to

enhance clinically interesting information in a PET dynamic imaging sequence in the first few

principal component images, but it is a data-driving technique which can not separate signals from

high noise level. A mixture model was introduced to estimate the parametric images with improved

mean square error performance and low computational complexity [16]. The purpose of this paper is

to extend the use the PET-FDG dynamic study for lesion detection which is based on a statistical

parametric imaging. We propose that the unique spatial and temporal metabolic time activity

curve (TAC) features available from PET-FDG dynamic images can not only be distinguishedly

identified for normal and malignant tissues, but also be useful for improving small lesion detection

by incorporating a statistical hypothesis test.

From a physiological compartment model analysis, the PET-FDG dynamic study for a given

tissue type can be interpreted by a homogeneous compartment model which is governed by a set

of kinetic parameters describing the passage of administered tracer for this given tissue type. A

homogeneous compartment is associated with a particular dynamic structure called a physiological

factor, a fundamental TAC, or a subspace basis [16]. A PET image pixel is usually modeled to

contain more than one physiological factor and is called a mixed pixel or a heterogeneous pixel.

It is assumed that a heterogeneous pixel TAC is a mixture of a finite number of independent

homogeneous compartments, hence, a pixel TAC is composed of a combination of the physiological

factors which constitute a subspace. In this paper, we hypothesize that each (heterogeneous)

tissue's kinetic behavior is governed by its own set of kinetic parameters, which suggests that

TAC shapes may vary among different tumors within a given patient, but will occupy the same

subspace provided they have the same kinetic model parameters. For example, malignancies can be

distinguished from normal tissues on the basis of biologically determined radiotracer accumulation

or loss rate. Because cancer cells divides rapidly, they metabolize glucose at a much higher rate

than do most normal tissues, hence, tumors uptake FDG more avidly and their TACs often increase

with time [11]. Therefore, it may be possible to use the invariant subspaces identified from visible,

large lesions to confirm suspected, but not unequivocally identifiable, small lesions.

We use the linear invariant subspaces to model lesion and normal tissue TAC features. By

forming the PET-FDG dynamic data into a temporal-spatial matrix, the lesion and normal tissue
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subspaces can be simply estimated by using the signal-subspace-fitting methods. The least squares

error (LSE) algorithm is used for parametric subspace estimation; while the principle component

decomposition is used for non-parametric subspace estimation. In order to utilize the identified

subspaces, several statistical hypothesis tests are derived for unknown lesion detection. Both su-

perimposed and replacement data models are used to characterize the observations of large lesions

and small lesions. Based on these two hypothesized data model, the statistical tests are called the

matched subspace detectors [19, 24] which can be derived from the generalized likelihood ratio test

(GLRT) principle. The matched subspace detector is actually the extension of the rank-1 matched

filter to the multi-rank filters. In this paper, both the rank-1 and the multi-rank GLRTs are de-

rived for the lesion detection. The rank-1 GLRT was derived in [19] by assuming that pixels are

uncorrelated spatially. Considering that image pixel values are not statistically uncorrelated be-

cause each count contributes to all pixel values [2], the rank-1 GLRT needs to add a pre-whitening

procedure. The spatial covariance matrix required for the pre-whitening can be computed using

the methods described in [2, 10]. In multi-rank GLRT approach, it is assumed that the spatial

inter-pixel correlation in each frame has the same structure but different energy level.

In this paper, we will concentrate on the filtered backProjection (FBP) reconstructed images.

The results from clinical PET-FDG dynamic studies show that the physiological features estimated

from known tumors and normal tissues are distinct and invariant, and are valuable for improving

lesion diagnosis by incorporating a statistical test. Finally, to quantitatively compare the sensi-

tivity and sufficiency of different estimations, detections as well as reconstructions, a Monte Carol

computer simulation of phantom dynamic images are simulated for achieving the receiver operating

characteristic (ROC) analysis.

In Section II, the PET-FDG dynamic data modeling described by a three-compartment FDG

model is used to define the FDG TAC. Then the subspace formation is introduced based on a

heterogeneous pixel assumption. Section III presents the signal-subspace-fitting methods for the

lesion and normal tissue subspace identification. A subspace refining method based on a subspace

angle criterion is shown for improving the subspace separation. Section IV adapts and extends

the GLRT for different assumptions of pixel correlation. The results of TAC feature identifications

and statistical tests for lesion detection in both clinic and phantom dynamic data are presented in
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Figure 1: 4-k three compartment model. The left compartment is considered as the blood pool
region and represents the concentration of FDG in the plasma. The middle compartment contains
the FDG in tissue. The right compartment contains the phosphorylate FDG (FDG-6-P) in tissue.

Section V. Section IV is a conclusion.

2 Tracer Kinetics Modeling for Dynamic FDG-PET

In this paper, we will focus on FDG-PET dynamic studies because FDG is widely used as the

tracer in clinical PET for lung and breast lesion detection. A 4-k three compartment model, one of

most common type of model, is used to model the kinetic behavior of a time activity curve(TAC).

Two cases, namely homogeneous tissue case and heterogeneous tissue case, will be discussed.

2.1 Homogeneous pixel: A 4-k Compartment Model

Under the homogeneous tissue assumption, the FDG tracer distribution in the tissue can be modeled

by three compartments 4-k model (Figure 2.1). The rate constants are defined as

K• = the transport of FDG in plasma to tissue,

k* = the transport of FDG in tissue to plasma,

k* = the phosphorylation of FDG to FDG-6-P,

k* = the dephosphorylation of FDG-6-P to FDG.

where * indicates decay-corrected FDG tracer quantities.

It has been shown [21] that the radioactivity for a homogeneous tissue Ctis is:

Ch, Wt =K) [(k* + k* - /3i)e-3
t + (02 - k* - k*)e-02t] a Cp(t)

)32 -32 -
41

= [Mie-Olt + M 2e-02] & Cp(t), (1)
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where

)3 = [(k* + k* + k*) - ý(k* + k. + k*) 2 41]l

[ •(k* + k* + k4*) + ý(k2* + k3' + k4*)2 -4k2*k4*,

1A K*

M2 -xK"(0l2- k*- k*), (2)/3 - 13

The total radioactivity measured by the PET scanner (under noise-free assumption), C(t),

including the radioactivity in the cerebral blood, can be represented as

C(t) = VbCp(t) + Ctis(t) = VbCp(t) + [Mle-3' t + M 2 e-02t] 0 Cp(t), (3)

where Vb denotes the vascular space in tissue and FDG concentration in whole blood is assumed

to be VbCp(t) at time t [18].

2.2 A Heterogeneous pixel: a mixture model

Due to the limited spatial resolution of the PET scanner and the forward and backward processes

in a PET system, the tissue concentration in a single pixel measured by the scanner is the mass-

weighted average concentration of radioactivity in many the homogeneous tissues [12],[20]. Given

that a mixed (heterogeneous) pixel contains j homogeneous subregions, from (3), Ctjs(t), the

weighted average radioactivity in a heterogeneous tissue can be written as:

J j
Ctis(t) = w wjCtis j(t) = Zwj[Mije-1it -+ M2je-32it] & Cp(t), (4)

j=1 j=1

where wj is the weighting coefficient for the jth homogeneous subregion. Then, the total radioac-

tivity measured by the PET scanner in a heterogeneous tissue, C(t), can be represented as:

C(t) = VbCp(t) + OCi,(t)

= VbCp(t) + >wj[Mije- j+ M 2je-2jt] ® Cp(t) (5)
j=l

Notice that Cp(t) = Cp(t) 0 6(t) z Cp(t) 9 fie-Ot when 13 --* oo. For real data, above approxi-

mation works well when 13 > 10. By this way, all terms in (5) are expressed as convolution of blood
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input function with a exponential function. Combining some constant terms and rearranging the

subscript j, (5) can be rewritten as:

J

0(t) = je®it & Cp(t) (6)
j=1

where aj and J are determined by M1 j, M2j, wj, Vb and J. (6) is the general format to model the

TAC measured by PET scanner, while (3) can be regarded as a special case (J = 1) for it.

In all models listed above , the plasma input function Cp(t) is considered as s given function.

There are several techniques available to obtain this function: 1) normalized population-based input

function, 2) invasive arterial line sampling, 3) ROIs of aorta or large vessels.

3 Time-Frequency Properties of TAC and Signal Subspaces for
TAC

The FDG malignant (tumor) cell, in general, demonstrates steady increase in average standardized

uptake values (SUV), while SUV in normal tissue decrease [29]. As a result, the observed TAC of

malignant tissue increases with time, whereas, normal tissue TAC washouts with time [26]. This

pattern is shown to be true in at least 80% of untreated primary cancers [29]. Figure 4.3 illustrates

this temporal difference between clinical TACs drawn from the tumor and normal ROI. From this

starting point, followed by some derivation of time-frequency properties, finally, it results in that

the tumor and normal tissue's TAC belongs to two different signal subspaces.

In this section, we will first exploit the temporal difference in frequency domain to characterize

the behaviors of the individual physiological process functions. Then, by decomposing the TACs

into summation of physiological process functions or alternatively decomposing the TACs into

summation of wavelet base functions, the time-frequency differences between the tumor and normal

TACs are revealed. This differences imply that tumor and normal TACs can be approximated by

different base function sets, which means the tumor and normal TACs belong to different signal

subspaces.
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3.1 Time Domain Properties of TAC

Define the physiological process function [27] f(!3, t) as:

f(3, t) = CP(t) ® e-o, t > 0 (7)

where Cp(t) is the arterial blood input function, /3 is the decay coefficient. Since Cp(t) is same for

an individual patient, it's /3 value that affect the temporal properties of different f(/3, t). Before

the further derivation, two constrains are added to Cp(t) under the noise free assumption. First,

Cp(t) must be non-negative. i.e. Cp(t) >_ 0 t > 0; second, there exist a To for each individual

Cp(t) such that dCp(t)/dt > 0, t < To while dCp(t)/dt < 0, t < To These constrains have been

verified by a large patient popularity [28] as well as by plasma TAC model [4]. With these two

constrains, we proved (Appendix) that for a given time T, T > To, there exists a threshold /3* in

dynamic FDG-PET for each individual patient, such that the Of(/3, t)/Ot 13=0,t=T = 0. Then for

/3 value which satisfies 0 <3 < /3*, Of(,3, t)/otITo<t<T > 0, while for /3 > /3*, Of (3, t)/Otlt=T < 0.

Remind that physiological process function f(/3, t) for tumor cell will go up along with time while

the normal cell's physiological process function f(/3, t) will go'down with time. Combining with

the temporal properties we just drawn above, we can conclude that f(/3, t) for tumor cell will have

/3 < /3*; , while f(/3, t) for normal cell will have /3 > /3*.

Using (6) and (7), the TAC measured by PET scanner in the heterogeneous tissue 0(t), can be

modeled as:
J J

0(t) E 0_, ® cp(t) = a f(0j, t), t > 0 (8)
j=1 j=1

When decomposing a TAC into the linear combination of many physiological process functions,

we hypothesis that the physiological process functions with /3 smaller that /3* are associated to

malignancy tissue, while the physiological functions with /3 bigger than /3* are related to normal

tissue. So, the physiological process functions can be divided into two sets: {f(13, t)l/3 < /3"} and

{f(f3, t)I13 > /3*}. The first set forms a linear subspace in which tumor's TAC lies, the second set

form a linear subspace in which normal tissue's TAC lies.
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Figure 2: A bunch of the physiological process functions f(/3, t) when/3 varies from 0 to 1

3.2 Frequency Domain Properties of TAC

From the linear system point of view, a physiological function is the output of the arterial input

function Cp(t) passing through a linear time invariant system with impulse response:

h(,3, t) = e-Ot, t > 0 (9)

Applying the Fourier Transform to the both sides of this equation (8):

J

0(w) = ajCp(w)H()3j, w) (10)
j=1

where Cp(w) is the Fourier Transform of blood function Cp(t), H(,3j, w) is the Fourier Transform

of h(/3j, t):

H(O,w)= 1/(/3 +jw), IH(B,w)I = 1//-2 2+ w2 (11)

Notice that the smaller the P3, the lower the filter's bandwidth. So, for a certain patient (with

a given blood input function), the physiological process function with smaller/3 contains less high

frequency components than those with the larger /3. Recall our hypothesis described in the previous

subsection, (10)(11) indicates that the TAC in malignance has fewer high frequency components

than that of normal tissue.
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Figure 3: Two-stage wavelets analysis filter bank. x[n] is the input signal, vi[n] is the output
wavelet coefficients of channel i. hL represents the lowpass subband filter, hH represents the
highpass subband filter.

3.3 Time-Frequency Domain Differences between Tumor and Normal TAC

In this section, the wavelet transformation will be employed so as we can get frequency domain

information as well as short period time information. Further more, the wavelet transformation

also provides an alternative way to express and identify the tumor and normal tissue's subspaces.

The discrete-time wavelet analysis and synthesis, in vector format, can be written as:

v = Tay (12)

y = Tsv (13)

where y is the input signal, v is the wavelet coefficients, Ta is the analysis matrix and Ts is the

synthesis matrix whose columns are discrete-time wavelet base functions:

T, = [01, 02,.. , k] (14)

where 0j, i = 1...k is the discrete-time wavelet base functions, k is the total number of base functions.

In practice, the discrete-time wavelet analysis can be implemented by subband linear filter

bank[31]. Suppose hL[n] represents the low-pass subband filter, hH[n] represents the high-pass

subband filter, y[n] represents the input signal. Figure 3.3 illustrates a two-stage cascading structure

of wavelet analysis. When passing a TAC through a multi-channel filter bank, the outputs of

different channels represent the components in different frequency bands. The higher the stage, the

lower the frequency. The outputs at the same channel carry the time information.
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Figure 4: Wavelet tilings of noise free tumor and normal tissue's TAC. (a) clinical noisy TAC and
denoised TAC for normal tissue. The denoise is done by model base least square curve fitting
method. (b) wavelet tiling of denoised normal TAC. The X-axis represents the time. Y-axis
represents the frequency band number, i.e. the channel number in the figure 3.3. The higher the
channel number the lower the frequency band. (c) clinical noisy TAC and denoised TAC for tumor.
(d) wavelet tiling of denoised tumor TAC.

Plotting the wavelet coefficients of a certain signal in 2D format, in which X axis represent

the time and Y axis represent the frequency, we will get time-frequency "tiling" which shows

the time-frequency distributions of that signal. Figure 3.3 illustrates the time-frequency tiling (the

amplitudes of the coefficients are.shown) of clinical normal and tumor TACs using wavelet analysis.

It is shown that (i) tumor TAC has fewer high frequency components than that of normal tissue. (ii)

energy of tumor TAC increases in the later time slots, while the energy of normal TAC decreases.

These observed patterns of time-frequency tilings concord with the tumor and normal TACs' time

domain and frequency domain properties derived before.

The purpose of involving the wavelet analysis here is to express the subspaces using wavelet base

functions. According to (13) (14), the wavelet transformation can be regarded as the decomposition

of the input signal to the weighted summation of independent wavelet base functions. The examples
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Figure 5: The Daubechies 4 wavelet base functions for 512 points seven levels filter bank. The base

functions for different levels, i.e. for different frequency bands, are shown.

of base functions are shown in figure 3.3. The different patterns of time-frequency tilings between

the noise free tumor and normal TACs imply that the tumor and normal TACs can be approximately

expanded by different subset of wavelet base functions. In another word, the tumor and normal

TACs belong to the different linear subspaces.

4 Subspace Formation and Identification

In this section, we first give a general formation of the subspaces, then two subspace identification

methods are provided. The clinical studies show that our hypothesis of existence of tumor and

normal tissue's subspaces is reasonable: the identified subspaces can express tumor and normal

TACs accurately. Beside the two sets of base functions will be discussed, namely physiology pro-

cess functions and wavelet base functions, the cubic B-splines, which are used in 4D continuous

reconstruction, potentially could be used as the base functions. By this way, it prospectively can

link the reconstruction process with tumor detection task.

4.1 The General Formation of Subspaces

The TAC received by the PET scanner with noise can be modeled as:

00

y(t) - 0(t) + n(t) = • aiej(t) + n(t) (15)
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where {el(t), e2(t), ... } is a certain set of independent continuous base functions (without loss of

generality, infinity number of base functions are used here. For real data, finite number of base

functions should be accurate enough). After sampling this continuous signal at N time points, it

becomes:
k

y = Zaiei + n = Ea+ n, (16)

i=1

where y, ej, n E RN, ej, i = 1, 2,..., k are independent; a = [a,, a2, ... , ak]' C R ; E • [el, e 2 , ... , ek]

is a N x k matrix. Because {ei, e 2 , ... , ek} is a set of base function defined on RN, k <- N should

be satisfied. The noise n is assumed to be additive Gaussian noise in this paper.

According to the subspace assumption we mentioned before, span{ei, e 2 , ... , eki is the union

of two subspaces: one is the subspace for the pure tumor TAC, denoted by (H); another is the

subspace for the pure normal TAC, denoted by (S):

(H) = span{el, ei2 , ... , eip1}, {il, i2 ... . , ip} C {1,2, ..., k}
(17)

(S) L span{ej,,eJ2 , ... ejq },I{Jl, j 2 . , Jq} C {1, 2, ... , k}

where p is the dimension of tumor's subspace and q is the dimension of normal tissue's subspace.

(H) and (S) may have some base functions in common, but each of the subset must contain some

base functions which are not included in another subset. Define matrix H and S as:

H _A [ei,, e i2,-. eip] (18)

A
S = [ej ,ej 2 , ... Iejq]

According to (16) and (18), the noisy TAC y sampled from the normal tissue region and tumor

region can be respectively modeled as:

Ho (normal) : y-= Sa+ n (19)

H1 (tumor) : y=Ha+n (20)

where a C Rq for normal case, and a C itRP for tumor case.

4.2 Subspace Identification Methods

Given the P pixels tumor or normal tissue's region of interest(ROI) date, the subspace identification

problem is to identify H or S respectively. Using (20)(20), the data model can be written as, for
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P pixels tumor tissue's ROI data:

Y =HA + N (21)

for P pixels normal tissue's ROI data:

Y= SA+N (22)

where Y = [Y1,Y2,...,Yp], A = [al,a2,...,ap], N = [nin 2, ..., np]. Because the identification

problem is similar for tumor and normal tissue, only the case for tumor case is discussed.

4.2.1 Parametric : Least Squares Estimation (LSE)

For the tumor ROI data described in (21), the subspace fitting using the LSE is defined as [23]:

H,A = argmin IIY - HAII2, (23)
H,A

where I-I IF denotes the Frobenius norm. It can be derived [23] that:

= axrg ax tr{PHyyTp } (24)

H

where PH - H(HTH)-lHT is the orthogonal projection matrix that projects onto the column

space of H and "tr" is the trace operator. When the measured blood function Cp(t) is available,

each column of H can be modeled using (6), otherwise (??)(6) will be used. By this way, the

only unknowns in H are the exponential parameters /3j, so the LSE becomes to search the fj over

a reasonable range, i.e. [0, 1] in this case(One Oj is corresponding to blood function and so as

considered a known term). Newton-Raphson [30] or spectral analysis method [13] can be used to

get the numerical solution for this problem.

4.2.2 Non-Parametric: Wavelet Transformation Method

Wavelet based subspace identification procedure includes three steps. First, using synthesis filter

bank (13) to compute the complete set of discrete-time wavelet base functions. Second, using

analysis filter bank (12) to compute the mean value of wavelet coefficients y for TACs at the given

P tumor pixels. Third, the base functions for p dimension subspace of the tumor are wavelet base

functions with the first p most significant wavelet coefficients. So,

II 1 3 [ Pi2, (25)
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Figure 6: Clinic FBP reconstructed image and ROI TACs. (a) the last frame(28th) of the PET-
FDG dynamic FBP reconstructed images, where three 5x5 pixels ROIs are chosen: Li in the large

lesion (primary), L2 in the small lesion (metastasis) and BG in the background (normal). (b) the

average TACs for ROI L1, ROI L2 and ROI BG respectively.

The subscripts il, ... ,ip are chosen such that vi,,... ,vip are first p most significant values in

vi, i = I1... k.

4.3 Subspace Identification Results

A clinical 28-frame PET-FDG dynamic study of lung cancer is shown here to verify our hypothesis

about the existence of the subspaces and the subspace identification methods (The detailed infor-

mation about the clinical data is listed in the next section). There are two lesions in this study,

clearly visualized large tumor (primary) and another barely seen smaller tumor (metastasis). Fig-

ure 4.3 shows the clinic image and ROI TACs sampled from the image. Our clinical study shows

the identified subspaces are accurate and separable.

Parametric LSE Method: The normal and tumor TAC's subspaces estimated by the LS method

were found to be spanned by {e- t, e-2t, e-3t} and {1- e-01t, e-02t, te-3t}, respectively, and

the parameter sets were {fO = 0.00025, 02 = 0.005, 03 = 0.05} and {/3 1 = 0.005, /02 = 0.0223,

,63 = 0.00125} for BG and L1, respectively. Figure (??) show the curve fitting results using sub-

spaces identified by LSE. Table (4.3) shows the curve fitting MSE. Both the figure and MSE show

that the identified tumor subspace Ht can fit tumor TAC well while fit normal TAC badly; the

14
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Figure 7: Comparison of accuracy and separability of extracted lesion and normal tissue's subspaces
using least square estimation. The Ht is estimated tumor's subspace using TAC data in L1, S is
estimated normal tissue's subspace using TAC data in BG. (left) TAC in Li represented by the
subspace S and TAC in LI represented by the subspace Hl. (middle) TAC in BG represented by
the subspace H and TAC in BG represented by the subspace S. (right) TAC in L2 represented by
the subspace H and TAC in L2 represented by the subspace S.

identified normal subspace S can fit normal TAC well while fit tumor TAC badly. In one word, the

identified subspaces are accurate and separable.

LI TAC L2TAC BGTAG

< > 0.0197 0.0123 0.0226
< > 0.0536 0.0266 0.0195

Table 1: Curving fitting MSE for different TACs. The subspaces < Ht > and < § > are estimated
by LSE

Non-Parametric Wavelet Transformation Method: The equations (12)(??) (25) and the base

functions choosing criteria are applied. Setting p = 8, q = 12, the base functions for tumor and

normal subspaces are illustrated in Figure 4.3. Figure 4.3 shows the curve fitting results using

subspaces identified by wavelet method. Table (4.3) shows the curve fitting MSE.

The results from both methods show that the estimated subspaces S and ft can respectively

represent the normal and lesion TAC very accurately (with small MSE). At the same time, S and

ft are separable: S can not represent the tumor TAC accurately (with large MSE) and Ht can not

represent normal TAC accurately.

15



Subspace <H>, Tumor

=e0.3

S0.2
03

-2 500 1000 1500 2000
Time(sec)

Subspace <S>, Normal

0.3

S0.2

Ti 0.1

S-0.1

-0.2 ,;,;
500 100 1500 200

Tirne(sec)

Figure 8: The tumor subspaces (H) and normal subspace(S) extracted using wavelet method
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Figure 9: Comparison of accuracy and separability of extracted lesion and normal tissue's subspaces
using wavelet method. The ft is estimated tumor's subspace using TAC data in L1, S is estimated
normal tissue's subspace using TAC data in BG. Notice that some estimated TAC overlap with the
patient TAC. (left) TAC in Li represented by the subspace S and TAC in Li represented by the
subspace fl. (middle) TAC in BG represented by the subspace Ht and TAC in BG represented by
the subspace S. (right) TAC in L2 represented by the subspace S and TAC in L2 represented by
the subspace Hl.

LI TAC L2TAC BGTAC

< > j 0.0154 0.0208 0.0296
< S> 0.0887 0.0446 0.0134

Table 2: Curving fitting MSE for different TACs. The subspaces < IH > and < § > are estimated
by wavelet analysis method
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5 Matched Subspace Detection

The generalized likelihood ratio test (GLRT) criterion is employed to solve the detection problem.

By using the principle of the GLRT, the matched subspace detectors [19, 241 will be derived under

two different assumptions of noise's time correlation and pixel's spatial correlation. The first one

assumes that the pixel is uncorrelated spatially and the noise is white in time. The second one

assumes the pixel is spatially correlated and noise is colored. For each of the detector, replacement

data model and superimposed data model, are applied.

5.1 Hypothesized Data Model

Depending on modeling whether the lesion is mixed with surrounding normal tissue or not, two

data models are used for the detection hypothesis.

Replacement Model: The lesion absence hypothesis Ho says that the data consists of a sum of

normal tissue signal x0 and the noise no. The lesion existence hypothesis H1 says that the data

consist of a sum of lesion signal x, and the noise nl. That is,

Ho:y=xo+no and Hl:y=xl+nl. (26)

where xi = HO, 0 C 7P; xo = So, 0 E Rq . no and nl are additive Gaussian noise.

Superimposed Model: The lesion absence hypothesis Ho is same as replacement model: the data

consists of a sum of normal tissue signal x0 and the noise no. The lesion existence hypothesis

HI says that the data consist of a sum of lesion signal xj, normal tissue signal xol (which means

xol E S, but xol may not be equal to xo) and the noise nl. That is,

Ho :y=xoo+no and H1 :y= (xl+x1-)+nl, (27)

where xl = HO, 0 E RP; xoo = Soo, 0o C Rq; X01 = Sol, ¢1 C Zq. no and nl are additive

Gaussian noise.

5.2 Generalized Likelihood Ratio Test

Given hypothesis test with model:

Ho:y=xo+no and Hl:y=xl+nl. (28)
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The generalized likelihood ratio test is:

=l(k1 ny) >Hi. 29
l(y)- o9<Ho)

/(Ao1Y)

where l(-) l ln(p(.)), p(.) is the probability density function, R1 and co are maximum likelihood

estimate(MLE) of x1 and x0 respectively.

5.3 Matched Subspace Detectors

Case 1: White Noise Without Spacial Correlation

For the replacement model defined in (26) with the assumption that the noise ni is normal with

zero mean and covariance matrix ar2I and the signal xi obey the linear subspace model x, = HO1

and xo = SO0O. Using (29)[19]:
() 1,2 1 2 jP(O'2) (30)

__ _ __ (= k-) N2e P{- 1-I' 1112-- -• l0 2I-7 -_2
I1(y) =(,2y) 2 20 p-+ I, Oor)

Substituting the MLE of oi, 0 and 0 into it, finally result in:

LI(y) - Ill 2  - -yTp 'y Ho (31)2 HY

where PLH is the orthogonal projection onto the complement subspace of (H) and P-L is the or-

thogonal projection onto the complement subspace of (S), which are defined as:

P4 = I - S(STS)-IST

(32)
S= I - H(HTH)-IHT

Similarly, for the superimposed model defined in (27), the GLRT becomes [19]:

L2(Y) =Iý =oh yT pky >H1 (33)

L2y) -iil,112 y~p-LS <Ho?2

where PRS is the orthogonal projection onto the complement subspace of (HS) • (H) U(S), which

is defined as:

PHs = I - HS(HSTHS)-IHS (34)

Case 2: Colored Noise With Spacial Correlation

It is assumed that the spatial inter-pixel correlation in each frame has the same structure but

different energy level. Let the P-dimensional vector fi = [fi(1), fi(2), • , f,(p)]T denote the spatial
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pixel data for the i-th frame and denote F = [fi,f2,"" , fN]. We assume that all the columns of

the matrix F are independent. Hence Y = [Yi, Y2,"" , yp] = FT. The derivation of the multi-rank

GLRT for the constrained correlation structure is based on a replacement model, i.e.,

H:Y=X+No (35)
Hi :Y =X, + N1.

The GLRT can be derived as :
1 + (G-1/ 2 R§)TP1(G-i/ 2R§) H,

L3(Y) = S >•7 (36)1 + (G-1/ 2R§)TPJ- (G-1/ 2R§) H0 '(6

A Awhere R is the covariance matrix, s = M-/ 2 1, • = (s~s)i/2s ,G= RRT - (R )(R§)T. The

matrix M is the correlation structure for each frame.

6 Result and Discussion

Three categories of dynamic PET studies are involved to demonstrate our methods. Physical

phantom study was designed to validate the efficacy of MSD for dynamic PET lesion detection.

Digital phantom study and clinical study were designed to validate the subspace identification

methods as well as MSD with estimated subspaces.

6.1 Dynamic PET Physical Phantom Study

Image Type I FBP Reconstructed Image MAP Reconstructed Image

Original Reconstructed Image I 1.55 I 1.62
MSD w/ Replacement Model 3.75 4.05

Table 3: Average Lesion to Background Contrasts for Physical Phantom Study

6.2 Dynamic FDG-PET Digital Phantom Study

The dynamic digital phantom is generated by passing an original noise free dynamic digital phantom

through a forward projection and a backwards reconstruction. The noise free dynamic digital

phantom, which simulates the anatomic structure of body containing heart, normal tissue and

tumors, contains 28 frames of 128x128 pixel images. To mimic the clinical physiological process,

all the TACs assigned to the digital phantom are obtained by the clinical FDG-PET studies. The
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Figure 10: Physical phantom study. (a) FBP reconstructed image at last frame (b) MAP recon-
structed image at last frame (c) Detection for FBP reconstructed image (d) Detection for MAP
reconstructed image
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measured blood function of one patient was used as the blood input function in the phantom. The

TACs in the proven tumor and normal ROI of the same patient are extracted from the clinical

images. Then based on the tracer dynamic model provided by (6), the parameters are estimated

by spectral analysis method [13]. By this way, we can get low noise phantom TACs while mimic

true clinic TACs very well (the TACs sampled from the clinical image, even after averaging, are

with high noise). The computer simulated phantom at last frame was shown in Figure. 6.2(a).

When simulating the forward projection for the phantom image, the total count of sinagram in

each frame was scaled to approach the total count for the corresponding frame in clinical dynamic

study. Then the sinagram data was added with Possion noise and blurred for system resolution.

FBP method is used for the reconstruction. Figure. 6.2(b) shows phantom dynamic image at the

last frame.

The estimated lesion and normal subspace fI and S were computed using TAC data sampled

from a 5 x 5 ROI in upper lesion in noise free phantom. Parametric least square and non-parametric

wavelet based methods were applied to identify subspaces. Replacement model and superimposed

model based matched subspace detection algorithm were employed for detection. The output images

are shown in Figure. 6.2 (c)(d)(e)(f). To calculate the average lesion to background contrast, mean

lesion and background values were achieved by averaging the 5 x 5 lesion and background ROIs

respectively. The results are listed in Table 6.2.

Image Type Upper Lesion Lower Lesion

Reconstructed Image 1.45 1.05
Replacement Model, LSE subspace 4.49 4.59

Replacement Model, wavelet subspace 5.01 4.62
Superimposed Model, LSE subspace 29.9 17.4

Superimposed Model, wavelet subspace 8.57 4.50

Table 4: Average Lesion to Background Contrasts for Digital Phantom Study

6.3 Clinic Dynamic PET-FDG Study

6.3.1 Protocol and Reconstruction of Dynamic PET-FDG Study

The clinical PET-FDG dynamic data was acquired with a Siemens/CTI ECAT Model 953A whole-

body PET scanner. This device provides 31 contiguous transaxial image planes with an axial field
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Figure 11: Digital phantom study. (a) original noise free dynamic phantom at last frame (b) FBP
reconstruction dynamic phantom at the last frame. (c) detection based on replacement model, sub-
spaces were estimated by LSE. (d) detection base on superimposed model, subspaces were estimated
by LSE (e) detection base on replacement model, subspaces were estimated using wavelet method.
(f) detection base on superimposed model, subspaces were estimated using wavelet method.
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of view of 10.8 cm. The nominal intrinsic resolution of the system is 4 mm in all 3 dimensions.

Consecutive detector rings are separated by tungsten septa in order to reduce scatter noise. Dy-

namic data will be acquired from 0 to 55 minute post injection. The dynamic structure protocol

for the clinical data acquisition was listed in Table 1. Two reconstruction methods, namely FBP

Scan Type Scan Times Frame Duration
Dynamic scan 0 - 2 min 15 sec/frame
Dynamic scan 3 - 5 min 30 sec/frame
Dynamic scan 6 - 25 min 1 min/frame
Dynamic scan 26 - 45 min 5 min/frame

Table 5: Dynamic Data Acquisition Protocol

and MAP reconstruction, were used in our clinical studies.

6.3.2 Clinical Lung Cancer Study

The image contains one confirmed primary tumor and one confirmed metastatic lymph node, which

is shown in Figure 6.3.2 (a) and (b). Ht and S are estimated using 5 x 5 ROI date in the primary

tumor region. Substituting the Ht and S estimated by LSE and wavelet methods into (31), finally

result in the output images shown in Figure 6.3.2 (c)(d)(e)(f). Notice that only replacement

model based methods are employed in clinical data study. Because for clinical data we have tried,

superimpose model based methods always get worse result comparing to replacement model. This

problem will be explained in the discussion section. The average metastasis to background contrasts

are listed in Table 6.3.2. To calculate the mean contrast, mean metastasis values were achieved

by averaging the 3 x 3 ROI centered at the confirmed metastasis region, while mean background

values were achieved by averaging whole body's region(not the whole image).

6.3.3 Clinical Breast Cancer Study

The detection procedures are same as the lung cancer case, two breast cancer images at different

planes are tested: one for the primary tumor, another for metastatic lymph node. The original clinic

images and all output images are shown in Figure 6.3.3 and Figure 6.3.3. The average metastasis

to background contrasts are listed in Table 6.3.2.
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Figure 12: Clinic lung cancer study. (a) FBP reconstructed image at last frame (b) MAP recon-

structed image at last frame (c) Detection for FBP reconstructed image, subspaces were estimated
by LSE (d) Detection for MAP reconstructed image, subspaces were estimated by LSE (e) Detec-
tion for FBP reconstructed image, subspaces were estimated by Wavelet method (f) Detection for
MAP reconstructed image, subspaces were estimated by Wavelet method
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Figure 13: Clinic breast cancer study. (a) FBP reconstructed image at last frame (b) MAP recon-
structed image at last frame (c) Detection for FBP reconstructed image, subspaces were estimated
by LSE (d) Detection for MAP reconstructed image, subspaces were estimated by LSE (e) Detec-
tion for FBP reconstructed image, subspaces were estimated by Wavelet method (f) Detection for
MAP reconstructed image, subspaces were estimated by Wavelet method
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Figure 14: Clinic breast cancer study. (a) FBP reconstructed image at last frame (b) MAP recon-
structed image at last frame (c) Detection for FBP reconstructed image, subspaces were estimated
by LSE (d) Detection for MAP reconstructed image, subspaces were estimated by LSE (e) Detec-
tion for FBP reconstructed image, subspaces were estimated by Wavelet method (f) Detection for
MAP reconstructed image, subspaces were estimated by Wavelet method



Image Type Lung Metastasis Breast Metastasis

FBP Reconstructed Image 2.67 2.03
MAP Reconstructed Image 3.99 2.34

FBP, LSE subspace 6.84 3.13
FBP, wavelet subspace 4.34 2.91

MAP, LSE subspace 4.95 5.01
MAP, wavelet subspace 6.38 5.40

Table 6: Average Lesion to Background Contrasts Using Different Method for Clinical Lung and
Breast Metastasis Cases

6.4 Receiver Operating Characteristic (ROC) Study

It is known that lesion detectability is well described by the ROC curve. The ROC curve is

determined by the rates of true positive and false positive. Fifty lesion phantom studies (with 250

known lesions) and fifty normal tissue phantom studies were conducted. The rates of true and false

positive decisions made from the three ROI kinetic analyses are counted, respectively, to form ROC

curves. The ROC curves, corresponding to the three kinetic feature analysis methods, are obtained

by Monte Carlo simulations and shown in Fig. 1 (e). The resulting ROC curves show that the

ROI based kinetic analyses with spatial decorrelation outperform the conventional TAC average.

Putting an additional constraint to the structure of the interpixel correlation further lowers the

false positive rate, because the correlation structure is estimated from the last frame and applied to

the rest. Due to relatively high counts, the structure estimated in the last frame is more accurate

than that in the early frames. The ROC curves, corresponding to the three kinetic feature analysis

methods, are obtained by Monte Carlo simulations and shown in Fig. 6.4.

The resulting ROC curves showed that the area under curve (AUC) in the ROI based kinetic

analysis with spatial decorrelation outperform the conventional TAC average. Putting an additional

constraint to the structure of the interpixel correlation further lowers the false positive rate, because

the correlation structure is estimated from the last frame and applied to the rest. The reason is

that, due to relatively high counts, the structure estimated in the last frame is more accurate than

that in the early frames. Also the AUC for MAP and OSEM is larger than that of FBP, which

shown that the iterative reconstruction method outperform the FBP method not only in the image

visualization, but also in the detection performance.
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Figure 15: ROC curves simulation (a) FBP: GLRT (white noise, non-white noise) vs multi-pixel
FLRT, where Az(multi-pixel GLRT)> A, (GLRT with non-white noise) ; A,, (GLRT with white
noise). (b) GLRT with white noise assumption: A,(MAP)> A,(OSEM)> AZ(FBP).

6.5 Discussion

The phantom and the clinical data study show that:

matched subspace detection result v.s. original image: MSD results have higher tumor to back-

ground contrast. In phantom study, the MSD results can find lower lesion invisible in the original

image. In clinical study, the MSD results improved lesion to background contrast for all cases, but

for some case the high noise make the false alarm rate high.

replacement model v.s. superimposed model: In phantom study, it is guaranteed that the pure tumor

TACs can be expressed explicitly by Ht only and the pure normal TACs can be expressed explicitly

by S only. So the superimposed model, just as what we expected, have higher tumor to background

contrast in phantom study. At the same time the noise in the MSD result with superimposed model

is also higher than that with replacement model. However, the situation changes for clinical study.

In reconstructed clinical PET image, the tumor, not matter how big it is, could be more or less

mixed with normal tissue. There may not exist such a pure tumor which can be used to extract

the true tumor only subspace H. Even if the large tumor ROI were defined, the estimated tumor

subspace is somehow mixed subspace H U S. So, for clinical study, the replacement model provide

better results.

LSE bases v.s. wavelet bases: For some cases the LSE bases have better results, while for other

cases wavelet bases provide better result. However, the wavelet method always have one advantage

over LSE method: LSE needs blood input function which is not always available or blood modeling
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which will make the LS curve fitting process difficult. On the contrary, the wavelet method don't

need blood input function all the time and is robust for all data set we test.

7 Conclusion

We have obtained encouraging results in preliminary research of exploiting kinetic features of the

time activity curves (TAC), identification subspaces and using matched subspace filter to assist in

lesion detection with FDG-PET dynamic images.

Results showed that the TAC subspaces identified from the FDG-FDG dynamic images have the

important characteristics which are applicable for computer-aided lesion detection: (a) express TAC

curves accurately, (b) distinguishable as lesion and normal tissue subspaces, (c) readily incorporable

to a matched subspace detector for lesion detection. By an application of the identified lesion and

normal tissue subspaces to the matched subspace detector, the lesion-to-normal tissue contrast can

be significantly enhanced relative to the original filtered backprojection clinical images. A Monte

Carlo of phantom dynamic study is conducted for the detection performance based a receiver

operating characteristic (ROC) analysis.
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A The condition of non-decreasing slope for the physiological pro-
cess function

Suppose that the blood input function Cp(t) is a continuous, differentiable function and satisfies

the following conditions:

CP(t) = 0, t< 0; cp(t)> o, t> 0;
- dC(t) >0, t<To, C•(t)=O,t=To; Cp(t)<Ot>To, (37)

C~) dt

More over, we assume all functions appear in this proof are differentiable and continuous.

Let the physiological process function be:

f(01,t) = CP(t) 9 e- ] = Cp(T)e-(t-r)dT -= Cp(t - T)e-TadT, 3 -> 0, t > 0 (38)

We want to show that:

(i) V T > To, A,3* s.t. o(/*,t) = 0

(ii) V 0 <t <T, af(3*") > 0

(iii) V fl > /3*, af("'t)lt=T < 0

(iv) V 0 < /3 < /3*, af (jt) I0<t<T > 0

Let g(13, t) = using (38), g(/3, t) can be written as:

g(0, t) a (/3,t) _ CP(t) - Of (/3, t) (39)
at

or

9(13t) = of(3,t) = Cp(o)e••t + C;(T-)e-O(tT-)d- = Cp(O)e-Ot + e-Ot j eCi(T-)d - (40)

Proof of (i).

When fix the t = T, g(/, T) is the continious function of/3. Using (39), when / = 0, g(0, T) =

Cp(T) > 0. If we can show that g(3,t)lt=T < 0 for some /3 > 0, then there must exist a /3* such

that g(/3*, T) = 0.

Let To+ be a time point s.t. To < To+ < T, there exist a number 0 < M < 0o s.t. Cp(t) K

-M, Vt C [To+, T]. Also, there exist a number 0 < N < cx s.t. Cp(t) • N, Vt e [0, To]. Using the
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later part of equation (40):

Tr

-,IT [Cp(O) + eCp(dr)dT]

TOTO T

o T

"_ e-T[cp(0)/6+ + e/7NdT - T eOr"Md] (41)

e -OT [Cp(O) +[ yN'T- MeT -13 +

--/-[Cp(0)OeOTo + NeOiTo++MeriT. _ MeOT]

Me-(T-To+) ICp(0)13 + N + M _ e-(TT+)]
13 M

Notice that T - To+ > 0, the term Cp(O)/3+N+M increases linearly with 3, while term e,(T-T+)

increases exponentially with /3. So, for some /3> 0, g(/3, T) < 0. Now, since g(O, T) > 0 and we just

proved that there exist a value /3 such that g(/3, T) < 0, there must be a point 0* where g(/3*, T) = 0.

Proof of (ii)

When fix /3*, g(/3*, t) is the function of t. By using (40), it's easy to show that g(/3*, t) > 0 for

t G (0, To]. Next, we'll consider the case for t E (To, T). From (39), taking time-derivative of g(/3, t)

results in:

-g( , C (t) -=f (/3,t) I O(t)f- /g(3, t) (42)

at Ca-0 it -193 t

We have assume that g(/*, t)lt=T = 0. If g(/3*, t) is not always positive in (TO, T), suppose at time

point t' G (To, T), g(/3*, t') _< 0. Then there must exist another time point t" G (t', T) such that:

ag(Q*,t) t=t" - 0, Cp(t") < 0 and g(/3*, t") = 0, which contradict (42). So for t E (0, To), g(/3*, t) > 0.

Combining two above cases, VO < t < T, of(/3*,t) > 0

Proof of (iii)

In order to prove (iii), we first need to prove that 0,30t)
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(40),
a2f p, t) _tC (O)e (t -t )C(t)e-(t)dT (43)

This quaton shws tat •Yfp't)
This equation shows that .oflt < 0 is hold for any )3 > 0 and t E (0, To]. Proceed from (43):

a3f (p, t) C (O)e-O ± 3tCp(0)eOt - ft C)- (T)e-O(t-)dT +)3 tt - T)Cp(T)eO(tT)dT

igtO/30t Jo

= -Cp(o)e••t - jt C -(T)e-(t-)d•r + ,3[tCp(o)e-•t + j(t - r)C;(T)e-•(t--)dT] (44)
_ Of( p, t) 02f(p, t)

at '- O3at

To prove ° ('t) < 0 for t E (0, T), the prove by contradiction is used. Suppose there exist

a solution to ,,f't) • 0, to E (To, T). Without loss the generality, we can also assumeO•Ota~ (=otto
the to, if it exists, is the minimum one. So, f(t < 0 for 3 t E (To, to).- Using equation(44)

a3f(3, t) &f()3, t)
atafoT t - =3*,t=jo <0 (45)

Notice that to C (0, T), by using (ii), the "<" sign is hold. Remind that 92f(Olt) < 0 for t E (0, To].

a2f (/,t)As t increase from To, due to our assumption, to is the first time point that the function ,(at

becomes zeros. This implies that 23f/32,t) > 01o-*.,t=to, contradict with (45). So, there does not00ia t --
exist to such that a2f (Ct) • 0 for t C (0, T). Therefor

a2f(•/, t) 1=,3* < 0, t C (0, T) (46)

a/3at

Next, we'll show 1 t=T < 0. Using equation (43),

a2 f pf, t) foT _T'TeO(-rda)f3,t I=,3-,t=T = -TCp(O)e-*T - (T- -)Cp

= -T[Cp(O)e-,*T + j C;(-)e-O*(T-T)dT] + T TCp(T)e-3*(T-r)d- (47)

= -Tg(ý3*,T) + j -TCp(T)e-o*(T-7a)dr
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Notice that g(!3*, T) = 0, so:

fp tT 
TCp(T)e-* (T-T) dT

9/30t JT-Ol),t*T ]0
- T°,TCp(T)e-O*(T--r)dT- + TCp+()e-Oj*(T-7)dT

f0T° T• (48)
< J ToCp(T)e-O*(T--)dr + j ToCp(r)e-O (T--)dr(

T o jT Cp(7_)e-O*(T-r)dT

To0[g(/3*, T) - Cp(O)e-,I*T] = -ToCp(O)e-,* T < 0
a2f(o,t)[

So, -a-=0, t=T < 0. Combine this with (46), we get:

,
2 f(/3, t) < 0, t E (0, T] (49)
atO)/3

Next, we'll prove V/3 > /3", L8f)t=T < 0 by using (49) and prove by contradiction. If (iii)

is not hold, then when /3 increases from /3*, assume the function 2L2) t=T cross the zero first

time when /3 - /3"+. Notice that, same as /3*, /3*+ also satisfies (ii) and (49). This implies,

at)o t=T < 0. But this contradicts with the assumption that 3*+ is the first value which

makes 'f(,t) lt=T cross the zero. There for:

V /3>/3*, Of(/3, t) ]t=T < 0  (50)

at

Proof of (iv)

Use the same technique as proof of (iii), we can prove V 0 </3 < /3, 2fLat) It=T > 0. So, we only

need to prove that

V </3 </3*, af - 0t)< 0  (51)

at 1<<

Lfo~,t) iThe proof by contradict will be employed again. Assume (51) is not hold, because tis

continuous function, there must exist a /3*-, 0 < /3*- < /3* and a T-, 0 < T- < T such that

af(ot) = 0. Then /3*- and T- are a pair of /3 and t values which satisfy (i), (ii) and

(iii). To make to clear, rewrite (iii) for/3*- and T- case:

V/3 >/3*-, af(3, t) t=T- < 0 (52)

at
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Notice that 3* > /3*-, T- < T, above equation implies that oft) 0=*, t=T- < 0 which is

obviously contradict with (ii). So, equation (51) is hold. Finally, result in:

V0_/3<13*, -fC(t) 10<t<T > 0 (53)
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Abstract

Residual FDG activity in normal tissues, such as blood vessels and the liver, as well as the spilled

in background activity can impair the detection of small or modestly tracer-avid tumors in FDG-

PET cancer imaging. In order to maximize tumor visualization but minimize background and

artifacts, an efficient new method is adapted from the constrained temporal filtering processing

widely used for signal detection and extended to the application of dynamic FDG-PET processing.

Comparing with the well-known Patlak analysis and spectral analysis (SA), the main advantage

of the proposed method is that it can objectively remove the partial volume effect superimposed

onto the TAC as well as the residual blood activities and result in the pixel-by-pixel estimations of

the infux constant as the output of the filter. Since the constrained temporal filter is designed to

preserve the power of tumor signal, therefore, it is likely to offer a desirable noise canceling result,

while make no or minimum distortion on tumor signatures. In contrast, Patlak analysis may suffer

in their ability to classify tumor and normal structures when the tumor is severely interfered by

background activity and present approximately similar time activity curve as that of normal tissues

at the end of the post-FDG injection period. For comparison, analytical expressions for SNR and

CNR of filtered images are derived, and the results of our digital phantom study suggest that

the proposed method has the best performance, comparing with the Patlak and SA. The mice

implanted with cancer cells are imaged with dynamic FDG-PET on the 6th day and the 12th day

after implantation, respectively. The proposed method is applied to process the earlier acquired

images and the resulting findings are confirmed with the later acquisitions. The results show that

the new method can enhance the tumor-to-background ratio at an early stage and is promising for

improving lesion detectability.



1 Introduction

Positron emission tomography (PET) with [18F]2-fluoro-2-deoxy-D-glucose(FDG)has been widely

used for non-invasive diagnosis of cancer. The diagnostic advantage of FDG-PET is important

because alterations in the metabolism of cells are often evidenced in disease states before struc-

tural changes can be determined using other medical imaging technologies, such as computerized

tomography (CT) and magnetic resonance imaging (MRI). While PET imaging provides a higher

sensitivity (95) for detecting lymph node metastasis than alternative modalities [1], recent study

shows nearly a 20 false-negative rate[2]. In addition to the relatively limited spatial resolution of

PET, the residual blood-born FDG activity may be contributing to this finding. Note that most

dynamic FDG-PET tumor detection methods are based on one fact that malignancies can be dis-

tinguished from normal tissues on the basis of biologically determined radiotracer accumulation

or loss rate. Because malignant tumors are metabolically active and FDG-avid on PET imaging,

they metabolize glucose at a much higher rate than do most normal tissues[3]. However, even after

60 minutes post-FDG injection, there is substantial blood-pool FDG activity remaining, possibly

impairing the ability to detect small tumor near blood vessel or near tissues with high normal FDG

activity. Besides the effect of residual FDG activity, the partial volume effect (PVE) also imparis

the spatial resolution of PET. PVE is contributed from the surrounding background activities, the

boundary pixels of a malignant area represent a mixture of tumor and normal tissues, instead of

the pure tumor tissues. Therefore, PVE dramatically lowers the tumor-to-background contrast of

small structures that are smaller than two times the full-width at half-maximum (FWHM)of the

tomograph [4].

Developing methodologies for maximally removing the residual blood FDG activity and cor-

recting the PVE has always been a critical issue in various FDG-PET quantitative studies. For

instance, the non-parametric techniques simply decompose the observed FDG-PET data to extract

the desired signal subspace using singular value decomposition or eigen-decomposition method.

After kinetic modeling using FDG is well established, parametric methods attract more atten-

tion. The widely used Patlak analysis estimates the macroparameter by determining the slope of a

transformed tracer uptake curve, which is based on three-compartment three-rate constants model



(3K) [5]. This method is extremely computationally efficient and has good performance on residual

FDG activity cancellation [2]. However, the assumption underlying the Patlak method is that FDG

is irreversibly trapped in the system(k 4 = 0) and this assumption only be valid for most malignant

tumors with progresive FDG accumulation in tissue over time. Therefore, Patlak analysis may be

vulnerable when the tumor is severely interfered by background activity because of PVE. Spectral

analysis is another conventional parametric approach, which enables the determination of pharma-

cokinetic parameters with relatively few model assumptions[6]. This method is limited by a lack of

knowledge of parameters in the model and the fitting procedure is also a concern, which is based on

non-negative lease squares (NNLS) algorithm, not a linear operator. Other previous attempts to

produce high quality PET images considered the use of various filters for FDG-PET images either

in the spatial or frequency domains [7],[8],[9].

This paper proposes a new approach by using a constrained temporal filter. The emphasis

of this method is to preserve the FDG features attributed to tumor tissues and eliminate the

undesired contributions of the residual FDG activity at the same time. In fact, by using two

imposed constraints, we can objectively remove the partial volume effect superimposed onto the

time-activity curves (TACs) as well as the residual blood activities, while making no distortion on

the desired malignancy features in time domain. Moreover, because this constrained temporal filter

is designed to minimize the energy of the output signal, our approach can also suppress the PVE

and statistical noise, besides removal of the structured interferences. Simulation results in section

IV show that the proposed approach outperforms Patlak and spectral analysis.

The paper is structured as follows. Sections II introduce the FDG model and briefly review

Patlak and spectral analysis. Sections III presents the ... Section IV validates ... through phantom

and animal studies.

Notation: All boldface letters indicate vectors (lower case) or matrices (upper case).

2 The Fluoro-Deoxy-Glucose (FDG) Kinetic Model

2.1 A 4-k Compartmental Model for the FDG Tracer Kinetics

The FDG kinetic model consists of three compartments which describes the tracer distribution

in the homogeneous tissue, as shown in Figure 1. The first compartment is considered as the

2



blood pool region and represents the concentration of FDG in the plasma. The second and third

compartments contain the concentrations of FDG in tissue and phosphorylated FDG in tissue

(FDG-6-P), respectively. The rate constants in Figure 1 are defined as follows:

K 1  = the transport of FDG in plasma to tissue,

k2 = the transport of FDG in tissue to plasma,

k3 = the phosphorylation of FDG to FDG-6-P,

k4 = the dephosphorylation of FDG-6-P to FDG.

The rate of change in the concentrations of FDG and FDG-6-P in a homogeneous ROI can be

described by the following differential equations

dC,(t)det) = K1Cp(t) - (k2 + k3)Ce(t) + k4 Cm(t),
dt

dCm(t)
dt = k3 Ce(t) - k4 Cm(t), (1)

where Ce(t) represents the concentration of FDG in the tissue at time t, Cm(t) represents the

concentration of FDG-6-P (and all metabolites derived from FDG-6-P) in the same region, and

Cp(t) represents the FDG concentration in the arterial plasma. Solutions of (1) [10] given that the

initial conditions C,(o) = Cm(O) = 0 show that the total radioactivity for a homogeneous tissue,

C(t), is the sum of the free [18F]FDG concentration plus the concentration of metabolites, i.e.,

C(t) C(t) + Cm(t)

_ K1 [(k3 + k4 - 31)e-1 t + (132 - k3 - k4 )e®2t 0 CW(t)

= [M1ie-1t ± M 2e-)2t] & Cp(t), (2)

where

1 =I [(k 2 + k 3 + k 4 ) - (k 2 + k 3 + k 4 )2 - 4k 2 k 4 ] ,
1

12 = [(k 2  k 3 + k 4 ) + Iv(k 2 + k3 +t k 4 )2 - 4k 2 k 4]

M2A K1, j3

M = (10 - k 3 - k 4 ), (3)
132-01i
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Figure 1: 4-k three compartment model

and 9 denotes the convolution operator.

The radioactivity measured by the PET scanner (under noise-free assumption), including the

radioactivity in the cerebral blood, can be represented as

Ctot.i(t) = VbCp(t) + C(t) = VbCp(t) + [Mie-• t + M 2e-32t ] D Cp(t), (4)

where Ctotai(t) is the total radioactivity measured by the scanner at time t; Vb denotes the vascular

space in tissue and FDG concentration in whole blood is assumed to be VbCp(t) at time t [11].

2.2 A 3-k Compartmental Model for the FDG Tracer Kinetics

The 3-K compartment FDG model is proposed by Sokoloff et al. in 1977 [10]. This model assumes

that [18F]FDG-6-P is irreversibly trapped in tissue for the duration of experiment and it is described

by

dCe (t) = KCp(t) - (k2 + k 3 )Ce(t),

dt
dCm(t)

dt k3Ce(t), (5)

The total radioactivity, including the radioactivity in the cerebral blood, is represented as

Ctotai(t) = VbCp(t) + C(t) = VbCp(t) + [Mi + M 2 e-121] & Cp(t), (6)

3 CONVENTIONAL METHODS OF DYNAMIC PET TUMOR
DETECTION

Before presenting the proposed constrained temporal filtering approach, it is worthwhile to present

a brief overview of Paltlak and spectral analysis in general. We will compare the performance of

these two methods with that of the proposed approach in Section V.
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3.1 Patlak analysis

Patlak analysis assumes 3-K compartment model for the FDG tracer kinetics (that is, k4 is assumed

to be zero).

The solution to the differential equations (3) is

Ctot.a(t) = Ki j Cp(T)dT + vCp(t) (7)

where v is related to the effective distribution volume of FDG.

By dividing through by Cp(t), the Patlak method employed to determine the macroparameter

Ki- k3 is given by
Ctotali(t) - K Cp(T)dT
Cp(t) - Ki Cp(t) + V (8)

Based on above equations, Patlak approach is implemented by an pixel-by-pixel analysis of

fCP C•da•ct), which gives the estimation of Ki. That Ki-slope image is expected to be

a one parameter approach to improve image contrast over static imaging, since the tumor would

have a higher influx and retention of FDG over most other normal tissues as a function of time. In

particular, earlier work in [2] shows that Patlak analysis has good performance on residual FDG

activity cancellation.

However, Patlak analysis may be vulnerable because the assumption underlying the Patlak

method is that FDG is irreversibly trapped in the system (k4=0). Even this assumption is valid

for most cases because most malignant tumors have progressive FDG accumulatio in tissue over

time, it is failed sometimes when the tumor is severely interfered by background activity because

of PVE. Figure 5(b) shows the time-activity curves (TACs) extracted in the selected ROIs from a

mouse study at an early stage of tumor growth. As we can see the TAC of the tumor tissue has an

approximately flat slope at the later frames. If we apply Patlak analysis to compute the Ki-slope

image, it fails to classify the tumor and normal tissues.

3.2 Spectral analysis

In the spectral analysis method, the tissue concentration of FDG activity, Ctot,,(t), is modeled as a

linear combination of basis functions, each defined as a exponential function convolved with Cp(t):
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J

Ctotal(t) = Z je-Oj & Cp,(t), t > 0

3=1J (9)

=Z fG0,t), t > o
j=1

where J is the maximum number of basis functions allowed in the model and values of /3 are cho-

sen to cover the spectrum of expected kinetic behavior. A spectrum of 03 values are predefined and

spaced logarithmically on a given interval [A,1], where A is the decay constant of the radioisotope.

The unknown coefficients, aj, can be estimated by the linear least square recursive curve fitting

technique with non-negative constrains. This technique can be applied at a pixel level enabling

calculation of parametric images independent of an assumed compartmental structure [11]. There-

fore, it is a general modeling approach. However, due to a lack of knowledge on the range of /3,

covering the spectrum of all possible kinetic behavior often results in estimation of a large number

of unknown coefficients ajs. The accuracy of the estimation is then degraded. Furthermore, the

linearity of the spectral analysis method may break down if (a) one or more of the measurement

vectors contains negative values, or (b) the true number of non-zero coefficients cannot be resolved,

either because of measurement noise or insufficient degrees of freedom. [12]

4 CONSTRAINED TEMPORAL FILTER

4.1 Optimization Criteria

Based on 3-K compartment model and taking into account the partial volume effect, we rewrite

the equation (7) as

Ctotai(t) = Ki Cp(,r)dT + VbCp(t) + Cv(t) + N(t) (10)

where C,(t) is the sum of [M2e-•2•0 Cp(t)] and partial volume effect (PVE) contributed from the

surrounding pixels (voxels) ; N(t) is the random noise which is uncorrelated with Cp(t) and C,(t).

Let vector cp = [Cp(tl), Cp(t 2 ),... , Cp(tm)]T be the sampled plasma concentration, where tj is the

time instant that frame j is acquired, and similarly define the vectors, Ctotal, c, and n. Equation

(10) then be expressed in a vector form,
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Ctotal = Kisp + Vbcp + c, + n = K.sp + e (11)

where

Sp [ Cp(T)dT, Cp(T)dT,..., Cp(T)dT (12)

e = Vbcp + cv + n (13)

In order to cancel the interference e defined in equation (13), pervious work has developed

many ways to find the weight vector w of an optimum filter subject to well-defined optimality

criteria. Although the details differ in different applications, the main assumptions and processing

algorithms are essentially the same. In particular, an important assumption is that the interfering

signals are uncorrelated with the desired signal. However, in our practice, the signal (Kisp) and

the interference (e) may be either partially or completely correlated. Moreover, [13] shows how

the interference rejection becomes more severe with increasing correlation between the desired

signal and the interferences. Therefore, in this work, we introduce a new optimum criterion called

optimum interference plus noise rejecter [14]. By using this criterion, all the interferences, whether

correlated or uncorrelated with the desired signal, are considered undesired and the weight vector w

is chosen to pass the Ki undistorted at the filter output while maximally rejecting the contribution

of the residual FDG activity, PVE and random noise. Multiplying both sides of equation (11) with

w, the output of the optimum filter is given by

WT ctotal = KiWTSp + YbWT Cp + W+ T Cv +±- wTn

(14)
KiWTSp + wTe

where wTe is the undesired contribution of the residual FDG activity, PVE and noise.

Then we propose two constrains to ensure unity gain in the desired signal direction and complete

removal of the interference,

wTsp = 1 (15)

wTe = 0 (16)
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However, because interference e includes unknown random noise n and background FDG con-

centration bg, it is usually difficult to determine the exact format of the e. In practice, we define

another interference variable esub as esub = Cp or esub = [Cp, bg], which is depended on whether we

can successfully extract the features of the interference caused by b9 . Then, we can rewrite (16) as

wTesub = 0 (17)

and the optimization objection function can be expressed as

min E[(wTe)(wTe)T] min WTRew(18)
WTSp = 1 wTp S 1

wTesub = 0 wTeSb = 0

where Re=E(eeT ) is the covariance matrix of the interference and it is free of the desired signals.

Substituting the constraints (15) and (17) into (14), the output of the optimum filter is

Ti • wTCtotal = Ki ± wrcv - wTn K, (19)

The approximation in (19) holds because the interference e, including random noise, should be

minimized by the filter w resulted from Equation (18).

4.2 Constrained Filter

The addition of the constrains to adaptive processing was first described by Frost [15]. Frost

presented a method of adapting the weights in a filter while holding the filter response fixed in a

certain waveform or time function or at certain frequencies [16]. It means that if we have a mx 1

constraint vector hi defined in prior by a filter designer, no matter how the filter weights wi are

changed, we can always keep

wThi = fi (20)

where fi is a given constant and w is a m x 1 weight vector.

Equation (12) illustrates that the constrained filter will preserve all the energy of hi if fi equals

to unity and eliminate the energy of hi if fi equals to zero. Suppose there are K such constraint

equations altogether. Then we may combine these constraints in one equation by defining a m x K

constraint matrix,

H =[hi, h 2 ,...,hK] (21)
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and by defining f to be a K-dimensional vector of the coefficients fi,

f = [fl, f 2,..., fK]T (22)

The constrains may then by written as

WTH = fT (23)

If we let the interference e(13) be the input signal of the constrained filter, then the output signal

is,

= WTe (24)

The average power of the constrained filter output signal is

P = wTE(eeT)w = WTReW (25)

Hence the optimization problem is to minimize wTRew subject to the constraint (23). Comparing

with (18), that is exactly the optimization criterion what we started in the previous part. By using

LMS criteria [18], we have

w = Re-lH(HTRe-H)-f (26)

which is the weight vector of our constrained temporal filter, satisfying the optimization criterion

(18). The derivation of (26) is given in Appendix A.

In the following discussion, we will use the above derivation to find the the constrained temporal

filter in order to enhance the tumor-to-background contrast in dynamic PET imaging. Suppose the

image size is L x L pixels at a given frame. Combining all images of m frames together, we form a

new mxL 2 matrix,
X1 2 L2 -1 L 2

X = [Ctotal , Ctotal Ctotal , Ctotal (27)

where Ctotali is the TAC in vector form at the ith pixel as illustrated in (11).

Even though our goal is to minimize wTRew (18) (25), it is actually difficult to determine the

value of interference e and its covariance matrix Re since they include the unknown random noise

n and background FDG concentration b.. In practice, we take and alternative way to achieve that

goal.
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Because the tumors under our study are assumed being small, in the TAC observations Ctotal ,

the residual FDG activity, PVE and noise should be dominant, comparing with the FDG activity

of tumor tissue. Therefore, we can use samples of Ctotalj at all different pixels to approximate the

covariance matrix of esub,

1 2 -2 L
2

- L8

esub .8 ý e .• X = [Ctotal , Ct . . ,otal , 1total (28)

hence

Re--b 'Re; XXT (29)

and using the two constrains stated in (15) and (16), we construct the constraint matrix,

H = [sp, esub] (30)

and

f [1, 0], if esub = Cp ;(31)

f { (1), if e,.b = [cp, bg] (

f = [1, 0], if esub = Cp (32)

or f =[1,0, 0], if e,.b = [cp, bg]

Substituting (30), (33)and (30) into (26),we have the optimum constrained temporal filter for

dynamic PET, which satisfied (15), (16) and (18)

4.3 Extension to 4-K model

We can also adapt the proposed optimum criterion to the 4-K compartment model. Using the same

definitions as in (6), the tissue concentration of FDG activity is rewritten as:

Ctotal(t) = Mj e-,O1(t-T)cp(T-)d"r + VbCp(t) + cv(t) + n(t) (34)

and the vector form is given by:

Ctotal Misp + VbCp + Cv "+ n = Misp + e (35)
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where

Sp = [Ijot e-01 (ti--)Cp(T)dT, fot2 e-01(t2 -7)Cp(T)dT,... ,otm e-1(tm--)Cp(T)dr (36)

Then, we can follow the same derivations as those of 3-K compartment model.

In general, performance of tumor detection is degraded with respect to that of the 3-K model.

This is expected, since the 4-K model has additional parameter with respect the 3-K model. How-

ever, how to determine that additional parameter 01 of 4K model is a difficult problem. Previous

work has proposed many methods to resolve this problem, like classical nonlinear least squares

(NLS), weighted integration method (WIM) and generalized linear least squares (GLLS) method.

For most cases, those techniques work well when the tumor location is known. However, if the

tumor is unknown, we have to go through every pixel in the image to estimate the parameters.

It is time consuming and the computational requirement is high. Moreover, how to set the initial

value is also a strong concern. Therefore, in the proposed approach, we take a different way to

implement the parameter estimation.

It is shown in [20]that cp(t) satisfies two constrains in the noise free case: first, cp(t) > 0

for t > 0; second, there exists a constant Tk such that ) > 0 when t < Tk and d < 0

when t > Tk. With these constrains, it has been proved that for a given time T, T > Tk, there

exists a threshold 3' of the macroparameter in dynamic FDG-PET for each individual patient,

acp(t)®ee-*t - 0)such that the physiological process function specified by /31* is horizontal (e.g. 0t

at a certain time t = T > Tk. Further more, when Tk < t, the physiological functions with

,3 < /3* will increase monotonically, or otherwise decrease when 013 > /3*. We also notice that

the the physiological process function for tumor cell will go up along with time; physiological

process function of inflammation cell will be roughly flat after a long time; while the normal cell's

physiological process function will go down. Therefore, wehn decomposing a TAC into a linear

combination of many physiological process functions, we hypothesize that the physiological functions

with 01i smaller than,3* are associated to malignancy tissue, but the physiological functions with /1

larger than 0* are related to normal tissue.

Based on above finding, we can first determine the value of /3, which is the first step of our

parameter estimation method. Then, we choose several predefined 01 values by spacing the interval
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[0, 0*] uniformly or logarithmically. In the next step, we form a constrained filter bank, in which

each filter is corresponding to one predefined value of f1 and generated by the proposed approach

of this work. Suppose there are N branches in the filter bank, after using this constrained filter

bank to process the dynamic PET images, the output vector of a certain pixel in the PET image

is given by

r = [rO, rl,..., rN-1]T (37)

ri = wiT Ctotal = MlwiTs p + wiTe (38)

= Si + zi (39)

where si is the desired signal of the ith branch in the constrained filter bank and zi is the

interference and noise of branch i.

Because z = [zo, Z1, ... , ZN - I]T is not white, the covariance matrix Rv = zzT is not necessarily

a scaled identity matrix. Therefore, we pass the output vector r through a noise whitening filter,

the resulting signal is given by:

r/ = sl + z/ = sR -12 + zRz-1/2 (40)

where r/ = [rot, rl/, ... , rN-lI]T.

Finally, we use Maximal Ratio Combining (MRC) technique to combine the output of all

branches simultaneously. At this stage, each of the branch output is weighted with a gain fac-

tor proportional to its own SNR and all of the output are combined to give the resulting output

image, which has the best SNR value. The output of the MRC scheme can be written as follows:

N-1

y =Ogri, (41)
i=0

where gj is the combining factor of branch i and the derivation of gi is given in Appendix B.

The constrained filter bank and maximal ratio combining scheme is shown in Figure. 2.

How to extract the features of the interference caused by background FDG concentration bg

is another strong concern of the proposed technology. The simplest way to resolve this problem is

that we do not use any background information when we form the esub, ie. , esub = Cp. However, we
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Figure 2: Constrained temporal filter bank

still want to eliminate the background interference as much as possible, since the background FDG

concentration will definitely degrade the image quality of the detection result. In our approach,

we draw ROIs in the dynamic PET image and obtain the bg from the ROI of the background

area. Then we form the esub as esub = [cp, b,](33) and generate the optimum weight vector w

for the whole image. The best way to form the isub is to acquire the features of bg adaptive. For

instance, we can use computed tomography (CT) to segment the whole PET image and distinguish

several different background area. Then we draw ROIs in these background area and extract several

difficult features b1, bgI,... ,bg. The background interference is expressed by

esUb [cp, b'] (42)

then we use eUsb to generate the optimum weight vector w' for the ith segmentation of the PET

image.

4.4 Decision Criterion

The problem of detecting small areas of images which differ in some statistical sense from their

immediate surroundings is of considerable interest in a number of image processing applications.

This section addresses a power detection algorithm which is the locally optimal detector for random

objects in Gaussian backgrounds. For the 3-K compartment model, the two hypotheses of our
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problem are given by (14):

Ho : xi = ni = wTe (43)

H 1  xi -= si ni = KiwTsp-+ wTe (44)

where xi is the a certain pixel in the ith segmentation of the PET images, si is the equivalent

desired signal and ni is the equivalent noise. We assume that ni is Gaussian process with local

mean mi and power spectral density o2.

Because signal-plus-noise density is unknown due to the uncertainty of tumor location, likelihood

ratio test can not be applied in our case. However, since we can measure the first and second

moment statistics of equivalent noise ni from the images, power detection scheme can provide great

probability of detection for a given false alarm rate. This power detector consists of a half-wave

linear device with the transfer characteristic

f xi, when xi _Ž 0; (45)
Y - 0, when xi < 0 .

Then by taking the power of yi and applying a power detector, the decision criterion becomes

"if zi > f (ai), then decide object present" (46)

with the threshold f(ai) is a function of false alarm rate ai

ai = Q( f (ai) - mi) (47)
c-i

where zi is the power of yi and the Q-function is defined by

Q(x) vL j -t2 /2dt (48)

The derivation of Equation (48) is given in Appendix C.

Following the same procedure, we can derive the decision criterion for the 4-K compartment

model.

5 EXPERIMENT RESULTS AND DISCUSSION

5.1 Digital phantom Study

In our digital phantom study, we use the simulated dynamic PET images, containing a uniformly

distributed ellipsoid background and 9 small tumors. Among them, the three tumors in the upper
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row are crosses of 3 x 2 pixels, containing 5 pixels in total. The middle and bottom three tumors are

squares of 2 x 2 pixels and 3 x 3 pixels, respectively. The area of each pixel is 2.7mm and tumor-

to-background ratio is equal to 1.5. The time-activity curves of the tumor and normal tissue,

which are used to generate this original phantom image, are extracted from the clinic patient

data.Three different methods have been applied to process the phantom image: Patlak analysis,

spectral analysis (SA) and the constrained temporal filter. Visual results Figure.3(a) shows the

original phantom image (true image), which contains nine artificial tumors in a uniform backgroud.

Two noisy and noise-free Filtered Backprojection (FBP) reconstructed phantom images are showed

in Figure.3(b) and Figure.3(c). Both of figures show the last frame of the reconstructed phantom

images, which are believed to have the highest tumor-to-background contrast among al dynamic

images. By comparing the Figure.3(a) and Figure.3(b), we can clearly see the distortion caused by

partial volume effect. Figure.3(d), Figure.3(e) and Figure.3(f) are the results of the noisy image in

Figure.3(c) processed by Patlak, SA and the constrained temporal filter, respectively. Figure.3(g)

shows the TACs drawn from the tumor and background in the original phantom image. Figure.3

(h)is the TACs drawn from the boundary of the tumor in the noise-free FBP reconstructed phantom

image, which actually is the mixture of the two TACs showed in the Figure.3(g) because of PVE.

5.1.1 Quantitative results

For performance evaluation, we measured the SNR and CNR in the output images resulted from

the above three methods. The definitions of SNR and CNR are described next.

(1) Singal-to-Noise Ratio

We use the same definitions of SNR and CNR given in [19]. Let Vjkd be the value of the (j, k)th

pixel in the desired ROI(DROI). Vjkd consists of a deterministic value plus statistical noise; the

desired deterministic value if then the mean E(Vjkd), and the strength of the noise is the standard

deviation [var(Vjkd)]1/ 2 . Signal-to-noise ratio of the desired feature (SNRd) is defined as

SNRd = E(V (49)

Var(Vj ,d)

where E(Vjkd) and [var(Vjkd)]1/2 in a homogeneous region can be estimated using the sample mean

and variance.

15



100

= 
' (d) 

.

.

.. 

(e). 

.
...

(f 
.

.
.

10120! 

12 
0

[ ..Lesion 

a

TAC ,a
0n 

4m 

proc 

am 

tl 
a 

I 
s, 

i0; 

0i 

la0 

2e 

"0 b) 

" 

1f. 

Im0 

inV

Figure.3(c) 

processed 

by constrained 

temporal 
filter.

16



TABLE I
PERFORMANCE OF PATLAK, SA AND CONST. FILTER

SA Patlak Const. Filter
SNR CNR SNR CNR SNR CNR

Tumor (1,1) 1.157 0.833 2.238 1.472 1.434 1.064
Tumor (1,2) 1.672 2.009 1.113 0.954 1.385 1.403
Tumor (1,3) 0.945 1.213 2.184 2.090 3.298 3.326
Average of 1.258 1.352 1.845 1.505 2.039 1.931
above 3 tumors I
Tumor (2,1) 1.322 1.468 1.270 0.755 2.136 1.789
Tumor (2,2) 1.169 1.414 2.084 1.848 3.172 3.026
Tumor (2,3) 0.500 0.254 1.700 1.037 3.609 3.487
Average of 0.997 1.045 1.685 1.214 2.972 2.767
above 3 tumors
Tumor (3,1) 0.618 0.240 1.359 1.068 1.633 1.472
Tumor (3,2) 1.185 1.418 2.054 1.788 3.188 3.001

Tumor (3,3) 1.715 1.960 3.086 2.700 2.854 2.724
Average of 1.173 1.206 2.166 1.852 2.559 2.399
above 3 tumors

(2) Contrast-to-Noise Ratio

In addition to SNRd, the CNR between the desired signal (tumor tissue) and undesired signal

(interference) is usually important for image interpretation. The CNR between the desired signal

and undesired signal is defined as

CNRd= E(Vjkd) - E(Vjk') (50)

V/0.5[var(Vjk') + var(Vjk )]

where Vjk' is the value of the (j, k)th pixel in the undesired ROI (UROI), and E(Vjku) and var(Vjku)

are the mean and the variance of pixel values in UROI, respectively.

By using (49) and (50), Table I compares the quantitative results of Patlak analysis, spectral

analysis (SA) and the constrained temporal filter. As Fig.3(a) shows, the nine tumors in original

phantom data are arranged as a 3 x 3 matrix. The index (i, j) of that matrix are used in Table I

to indicate the location of tumors.

Both image results and numerical results suggest that the constrained temporal filter has the

best performance. Comparing with the other two methods, the main advantage of our approach

is that it can objectively remove the PVE superimposed onto the TAC and the residual blood

activities in the pixel-by-pixel estimations of MI.
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5.2 Physical phantom Study

Figure 4: Results of physical phantom study.
(a) MAP reconstructed phantom image (b) Output image of processing Figure.4(a)by the constraint
temporal filter, (c) Power detector result of Figure.4(b),

oil

.(a) (b) .c)

(a) MAP reconstructed phantom image (b) Output image of processing Figure.4(a)by the constraint
temporal filter, (c) Power detector result of Figure.4(b),

5.3 Animal Study

Dynamic PET imaging of FDG (200 puci) was performed on a MicroPET R4 system (Concorde

MicroSystems, Inc). Female athymic nude mice with human breast cancer cell MDA-MB-435

inoculated into both sides of mammary fat pads under the arms. Six days after inoculation, thirty-

five dynamic data frames (6 x I sec, 4 x 3 sec, 10 x 30 sec, 5 x 60 sec, and 10 x 300 sec) were acquired

for 1 hour after intravenous injection. Images were reconstructed with the OSEM algorithm, as

shown in Figure.5(a). The corresponding time-activity curves of the two tumors, normal tissues

and heart have already been shown in Figure.5(c). Figure.5(e) is the resulted image of Figure.5(a)

after passing through the constraint temporal filter.

In Figure.5(b) we show the OSEM reconstructed image acquired twelve days after inocula-

tion. Figure.5(d) demonstrates the corresponding TACs and Figure.5(f) is the resulted image of

Figure.5(b) after passing through the constraint temporal filter. Comparing Figure.5(a) and Fig-

ure.5(b), we can see that the tumors grow bigger and the slope of tumor's TAC becomes larger

after six more days. Based on detection result of Figure.5(h), we confirm that the findings in the

filtered output image shown in Figure.5(g) are correct.
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From the results of the mouse study, it appears that using constrained temporal filter is an

optimal approach to eliminate the residual blood FDG activity especially for the stressing cases

with difficulties to tell the difference between the slopes of tumor and normal tissues. This approach

also offers a desirable result in eliminating partial volume effect (PVE) and image noise artifacts.

5.4 Clinic Study

5.4.1 Protocol of Dynamic PET-FDG Study

The clinical PET-FDG dynamic data was acquired with a Siemens/CTI ECAT Model 953A whole-

body PET scanner. This device provides 31 contiguous transaxial image planes with an axial field

of view of 10.8 cm. The nominal intrinsic resolution of the system is 4 mm in all 3 dimensions.

Consecutive detector rings are separated by tungsten septa in order to reduce scatter noise. Dy-

namic data will be acquired from 0 to 55 minute post injection.The dynamic structure protocol for

the clinical data acquisition was listed in Table 2.

Scan Type Scan Times Frame Duration
Dynamic scan 0 - 2 min 15 sec/frame
Dynamic scan 3 - 5 min 30 sec/frame
Dynamic scan 6 - 25 min 1 min/frame
Dynamic scan 26 - 45 min 5 min/frame

Table 1: TABLE II: Dynamic Data Acquisition Protocol

5.4.2 Clinical Breast Cancer Study

Two breast cancer images at different planes are tested: one for the primary tumor, another for

metastatic lymph node.

5.4.3 Clinical Lung Cancer Study

The detection procedures are same as the breast cancer case. The image contains one confirmed

primary tumor and one confirmed metastatic lymph node
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inoculation) at the last frame with the highest tud@0r-to-backgournd ratio, (b) OSEM Reconstructed
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image of processing Figure.4(a)by the constraint temporal filter, (f) Output image of processing
Figure.4(b)by the constraint temporal filter, (g) Power detector result of Figure.5(e), (h) Power
detector result of Figure.5(f).



Figure 6: Results of constrained filter.
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6 CONCLUSION

Enhancement of tumor-to-background contrast in dynamic PET images may be obscured by resid-

ual FDG-associated activity in normal tissues and blood as well as by PVE. Even though Patlak

method and spectral analysis can improve tumor visualization when tumors are large, it fails some-

times when tumor and normal tissues have the almost same slope of TAC due to the PVE. A new

approach of using the constrained temporal filter seems to be superior to Patlak and SA methods

as shown in our digital phantom study and the animal study of early detection with mouse.
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7 APPENDIX

7.1 A

The problem of optimization subject to a constraint may be handled with the Lagrange multiplier

method. We define the performance index

/(w) = wTRew + A(WTH - fT) (51)

where A is K-dimensional column vector of Lagrange multiplier. We may determine the optimum

weight vector w by setting the derivatives of I(w) with respect to wi equal to zero,

O(W) =0,1 < i <-m and W=[Wl,W2,...,Wm]
T  (52)

eOwi

Then, we obtain

VwI(w) = Rew + HA 0 (53)

where

VW0 OIT (54)
aw W2 w

The optimum weight vector is then

w = -Re 1-iHA (55)

To evaluate w, we have to know A. However, since w must satisfy the constraint, the following

relation holds:

HTw = -HTRe-IHA = f (56)

Hence,

A = -(HTRel-H)-lf (57)

and Equation (55) gives

w = Re-H(HTRe-H)-lf (58)

7.2 B

The combined output of the MRC scheme can be written as follows:

N-1 N-1 N-1

y E = r 1: gigl + E± gizi, (59)
i=O i=O i=O

24



where gi is the combining factor of branch i and zil of the different branches are uncorrelated. The

SNR of the combined output signal is given by

'-N-1 2E

F = Ei1V 9 g~Es' (60)EN-1 g20,2 (0

i=Ogi ari

where ai2 is the power spectral density of zig and E,' is the energy of ri/. The combining gain

factors should be chosen in order to maximize the above SNR. By using Schwarz inequality we can

write the above resulting SNR as

(ENi gj2j2)(_.%= E8 i/°' 2) =N- (61)
_ < =OE - g,2 0,,2 9i2(1

-O ii=O0

Equality in Schwarz inequality is obtained if and only if combining gain factors are chosen as

gi = k V/-7•s(62 a2  (62)
(Ui2

where k is an arbitrary positive constant. Thus, the maximum value of the output SNR is given by

N-!i N-1

F E= S = (63)
i=0 i=0

Consequently, the SNR of the resulting signal is equal to the sum of the SNRs in each branch for

maximal ratio combining.

7.3 C

For the desired signal absent hypothesis H0 , the probability density function of xi is given by

pXi(xi) = 1 e- 2•,i (64)

The probability distribution function of the output of the half-wave linear device can be expressed

in terms of the input borbability density function as

P(Yt :- Yi) = 0 for Yi < 0 (65)

or P(yt < yi) = P(xi < 0) + jPxj(xi)dxi for Yi > 0 (66)

By differentiating Equation (66)with respect to yi, we get

py (yi) = P(xi <0)6 (yi) +p~i(yi)U(yi) (67)
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where U(yi) is the unit step function. Since zi = (yi) 2 , yi > 0

1 - 2

Pz (Zi) = Q (-) ZVi)+ u e 2) (68)

The false alarm rate ai is given by

ai j Pz•(zi)dzi = (f(ai) - mi) (69)
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